Elucidating the interaction between major histocompatibility complex (MHC) molecules and antigenic peptides is fundamental to better understanding of the processes involved in immune responses and for the development of innovative immunotherapies. In the present study, hidden Markov models (HMM) were combined with the successive state splitting (SSS) algorithm for optimization of the HMM structure, to predict peptide binders to the human MHC class II molecule HLA-DRB1*0101. The predictive performance of our model (S-HMM) was compared with fully connected HMM and artificial neural network (ANN) methods using the relative operating characteristic (ROC) analysis. The S-HMM predictions had values of ROC > or = 0.85 which was at least as good, or better than the comparison methods. In addition, S-HMM is trained on positive data only and does not require exhaustive data preprocessing, such as peptide alignment. Our results demonstrated that S-HMM combines the high accuracy of predictions with the simplicity of implementation and is therefore useful for analyzing MHC class II binding peptides. In particular the S-HMM may be trained using only positive data and, the preprocessing of training data, such as peptide alignment and the selection of binding cores, is not required in this method.
Characterizing the interaction between major histocompatibility complex (MHC) molecules and antigenic peptides is critical for understanding immunity and developing immunotherapies for autoimmune diseases and cancer. To identify the peptide binding motif and predict peptides that bind to the human MHC classII molecule HLA-DR4(*0401), we applied a fuzzy neural network (FNN) capable of extracting the relationship between input and output. Analysis of the peptide binding motif revealed that the hydrophilicity of the position 1 residue located on the N-terminal side of the nonamer (9mer) was the most important variable and that the van der Waals volume and hydrophilicity of the position 6 residue and the hydrophilicity of the position 7 residue were also important variables. The estimation accuracy (A(ROC) value) was high and the binding motif extracted from the FNN agreed with that derived experimentally. This study demonstrates that FNN modeling allows candidate antigenic peptides to be selected without the need for further experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.