Aims: This study was conducted to clarify the taxonomic status of Bacteroides type A strains with high vitamin B12‐producing ability that is widely distributed in the intestinal tracts of freshwater fish. Methods and Results: Seventeen strains of Bacteroides type A isolated from five fish species were all rod‐shaped and gram‐negative. The strains were positive for esculin hydrolysis, nitrate reduction, resistance to bile, acid phosphatase, and negative for the production of catalase and urease and the susceptibility to vancomycin. The G+C content of DNA from the 17 strains was 29·1–31·9 mol%, and 16S rDNA sequence analysis revealed a close phylogenetic relationship between Bacteroides type A strains and Cetobacterium somerae sharing 99·7–100% sequence similarity. In addition, strains were capable of producing vitamin B12 at a rate of 1·82–13·98 ng ml−1 in 48 h. Conclusion: Phenotypic and phylogenetic characteristics indicated that all isolates previously classified as Bacteroides type A strains belong to C. someare. Significance and Impact of the Study: This study provided the important finding of novel niche of vancomycin‐resistant bacteria such as C. somerae in the intestinal tract of freshwater fish.
One of the limitations on imaging fluorescent proteins within living cells is that they are usually present in small numbers and need to be detected over a large background. We have developed the means to isolate specific fluorescence signals from background by using lock-in detection of the modulated fluorescence of a class of optical probe termed ''optical switches.'' This optical lock-in detection (OLID) approach involves modulating the fluorescence emission of the probe through deterministic, optical control of its fluorescent and nonfluorescent states, and subsequently applying a lock-in detection method to isolate the modulated signal of interest from nonmodulated background signals. Cross-correlation analysis provides a measure of correlation between the total fluorescence emission within single pixels of an image detected over several cycles of optical switching and a reference waveform detected within the same image over the same switching cycles. This approach to imaging provides a means to selectively detect the emission from optical switch probes among a larger population of conventional fluorescent probes and is compatible with conventional microscopes. OLID using nitrospirobenzopyran-based probes and the genetically encoded Dronpa fluorescent protein are shown to generate high-contrast images of specific structures and proteins in labeled cells in cultured and explanted neurons and in live Xenopus embryos and zebrafish larvae.high-contrast ͉ optical switches ͉ "ac"-imaging ͉ fluorescence microscopy U nderstanding the molecular basis for the regulation of complex biological processes such as cell motility and proliferation requires analysis of the distribution and dynamics of protein interactions within living cells in culture and in intact tissue (1). Tremendous advances have been made toward the development of new optical probes (2, 3) and imaging techniques that are capable of detecting proteins down to the level of single molecules (4-11). However, in living cells, such detection is compromised by autofluorescence, which can amount to several thousand equivalents of fluorescein per cell (12), as well as by light scattering (13). A major challenge in live-cell imaging, therefore, is to develop classes of probes and imaging techniques that are capable of resolving fluorescence signals from synthetic probes or genetically encoded fluorescent proteins in living cells and tissue against large background signals that may vary in time and space.A simple and highly-effective approach for isolating a specific fluorescence signal from a large background is to reversibly modulate the fluorescence intensity of only a probe of interest that is bound to a specific protein by applying a uniform, rapid and specific perturbation (e.g., a change in temperature (14), pressure (15), or voltage (16) to which that probe is uniquely attuned. The modulated fluorescence can be isolated from other steady sources of background fluorescence by lock-in detection, making it possible to specifically extract the probe fluoresc...
Calcium-dependent protein kinases play a crucial role in intracellular calcium signaling in plants, some algae and protozoa. In Plasmodium falciparum, calcium-dependent protein kinase 1 (PfCDPK1) is expressed during schizogony in the erythrocytic stage as well as in the sporozoite stage. It is coexpressed with genes that encode the parasite motor complex, a cellular component required for parasite invasion of host cells, parasite motility and potentially cytokinesis. A targeted gene-disruption approach demonstrated that pfcdpk1 seems to be essential for parasite viability. An in vitro biochemical screen using recombinant PfCDPK1 against a library of 20,000 compounds resulted in the identification of a series of structurally related 2,6,9-trisubstituted purines. Compound treatment caused sudden developmental arrest at the late schizont stage in P. falciparum and a large reduction in intracellular parasites in Toxoplasma gondii, which suggests a possible role for PfCDPK1 in regulation of parasite motility during egress and invasion.
To investigate the effect of live and dead probiotic cells on the non-specific immune system of tilapia Oreochromis niloticus, probiotics were introduced by feeding either in the form of live or dead cells, or supplying live cells to the rearing water in a closed recirculating system. The probiotics treatment enhanced non-specific immune parameters such as lysozyme activity, migration of neutrophils and plasma bactericidal activity, resulting in improvement of resistance to Edwardsiella tarda infection. Especially, oral administration of live cells seemed to be more effective compared with other probiotic treatments such as oral administration of dead probiotic cells and supply of live probiotic cells to the rearing water. These results indicate that probiotics treatment is promising as an alternative method to antibiotics for disease prevention in aquaculture, and the viability of probiotic bacteria is a key factor to induce more potential effect of probiotics used for fish production.
The strawberry poison frog Dendrobates pumilio (Anura: Dendrobatidae) and related poison frogs contain a variety of dendrobatid alkaloids that are considered to be sequestered through the consumption of alkaloid-containing arthropods microsympatrically distributed in the habitat. In addition to ants, beetles, and millipedes, we found that adults of two species of oribatid mites belonging to the cohort Brachypylina, trophically a lower level of animal than ants and beetles, contain dendrobatid alkaloids. Gas chromatography/mass spectrometry (GC/MS) of hexane extracts of adult Scheloribates azumaensis (Oribatida: Acari) revealed the presence of not only pumiliotoxin 251D (8-hydroxy-8-methyl-6-(2'-methylhexylidene)-1-azabicyclo[4.3.0]nonane), but also precoccinelline 193C and another coccinelline-type alkaloid. From the corresponding extracts of an unidentified Scheloribates sp., pumiliotoxin 237A (8-hydroxy-8-methyl-6-(2'-methylpentylidene)-1-azabicyclo[4.3.0]nonane) was detected as a minor component, and identified by synthesis. The presence of related alkaloids, namely deoxypumiliotoxin 193H, a 6,8-diethyl-5-propenylindolizidine, and tentatively, a 1-ethyl-4-pentenynylquinolizidine, were indicated by the GC/MS fragmentation patterns, along with at least another six unidentified alkaloid components. Thus, one possible origin of pumiliotoxins, coccinellid alkaloids, and certain izidines found in poison frogs may be mites of the genus Scheloribates and perhaps related genera in the suborder Oribatida.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.