This study presents an investigation of the anticancer and antimicrobial ability of a combination of ginger and cannabis extracts in different ratios (1:1, 7:3 and 3:7). Extracts were obtained using various methods (Soxhlet extractions, cold macerations, ultrasonic extractions and supercritical fluid extractions). The antioxidant activity and the presence of total phenols were measured in the extracts, and the effect of the application extracts in various concentrations (c = 50, 20, 10, 5, 1, 0.1, 0.01 mg/mL) on cells was investigated. Higher values of antioxidants were measured at the ratio where ginger was predominant, which is reflected in a higher concentration of total phenols. Depending on the polyphenol content, the extracts were most effective when prepared supercritically and ultrasonically. However, with respect to cell response, the ratio was shown to have no effect on inhibiting cancer cell division. The minimum concentration required to inhibit cancer cell growth was found to be 1 mg/mL. High-performance liquid chromatography (HPLC) analysis also confirmed the effectiveness of ultrasonic and supercritical fluid extraction, as their extracts reached higher cannabinoid contents. In both extractions, the cannabidiol (CBD) content was above 30% and the cannabidiolic acid (CBDA) content was above 45%. In the case of ultrasonic extraction, a higher quantity of cannabigerol (CBG) (5.75 ± 0.18) was detected, and in the case of supercritical fluid extraction, higher cannabichromene (CBC) (5.48 ± 0.13) content was detected, when compared to other extraction methods. The antimicrobial potential of extracts prepared with ultrasonic and supercritical extractions on three microorganisms (Staphylococcus aureus, Escherichia coli and Candida albicans) was checked. Ginger and cannabis extract show better growth inhibition of microorganisms in cannabis-dominated ratios for gram-positive bacterium S. aureus, MIC = 9.38 mg/mL, for gram-negative bacterium E. coli, MIC > 37.5 mg/mL and for the C. albicans fungus MIC = 4.69 mg/mL. This suggests guidelines for further work: a 1: 1 ratio of ginger and hemp will be chosen in a combination with supercritical and ultrasonic extraction.
Oregano (Origanum vulgare) is considered to be a good and cheap source of phenolic compounds with favorable biological activities, especially antimicrobial and antioxidant properties. Hypothesis/Purpose: The current work explored the optimization of the process conditions of solid–liquid extraction from Origanum vulgare to obtain extracts with high antimicrobial activity. We investigated which parameters promoted different efficiencies, leading to the maximum extraction of phenols and the consequent highest level of biological activity. Design-Expert Pro 11 was selected to design and analyze the experiments. The extracts were obtained by maceration as a simple method to recover value-added compounds from plant material, and supercritical fluid extraction was carried out as a green method with a high selectivity to obtain the compounds of interest. Pressure, temperature, and time were varied to obtain extracts with high antioxidant and antimicrobial activity. According to the results obtained using Design-Expert, the optimal conditions for maceration were at a temperature of 83 °C. The 1,1′-diphenyl-2-picrylhydrase method was used for the determination of antioxidant potential, while microdilution methods were used to determine the antimicrobial potential with regard to Staphylococcus aureus, Escherichia coli, and Candida albicans. A level of antioxidant activity of 87.21% was achieved. Supercritical fluid extracts showed higher antioxidant activity at a higher temperature of 60 °C and higher pressure of 25 MPa, although the results at 40 °C and 25 MPa were similar. The lowest minimum inhibitory concentration (MIC) values were 0.147 mg/mL for S. aureus, 0.728 mg/mL for E. coli, and 0.311 mg/mL for C. albicans. Overall, the optimal conditions for supercritical fluid extraction were 25 MPa and 40 °C. On the other hand, amounts of 0.208 mg/mL for S. aureus, 1.031 mg/mL for E. coli and 0.872 mg/mL for C. albicans were obtained using maceration. The MIC values of extracts obtained by supercritical fluid extraction were comparable to the minimum inhibitory concentration values obtained by different conventional techniques, such as those of Clevenger and Soxhlet.
Arnica montana L. flower heads are known for their antioxidant, antimicrobial, and anticancer activity. The aim of this work was to optimize the process of supercritical CO2 extraction, to achieve high extraction yield and high content of biologically active components, and to confirm the antimicrobial and anticancer activity of the extract. The influence of pressure and temperature on the total phenolic content, antioxidant activity, and proanthocyanidin content was evaluated. The pressure and temperature were found to be interdependent. A temperature of 60°C and a pressure of 30 MPa resulted in a high extraction yield, antioxidant activity and phenolic content. The content of proanthocyanidins was highest at a pressure between 18 and 24 MPa. The extracts inhibited three different microorganisms successfully; Staphylococcus aureus, Escherichia coli and Candida albicans, at concentrations ranging from 0.1 to 5.16 mg/ml and showed anticancer activity decrease up to 85% at a concentration of 0.5 mg/ml.
Proper processing of natural material is crucial to obtain an extract with high content of biologically active components. Dried, grinded ginger roots were extracted by ultrasonic method and supercritical extraction with CO2. The aim of the study was to determine if a mixture of the two types of extracts attained by different methods and solvents exhibits better bioavailability than each extract itself. Therefore, both extracts were analytically evaluated and then mixed in a ratio of 1:1. The supercritical extract (SCG extract) and the mixed extract (mixG extract) had high antioxidant activity (78% and 73%) and total phenols (827 mg/g ext. and 1455 mg/g ext.), which is also consistent with the levels of gingerol (303 mg/g ext. and 271 g/g ext.) and shogaol (111 mg/g ext. and 100 g/g ext.) in the extracts. In comparison to both pure extracts higher levels of total phenols were found in the extract mixG. This could be the reason for the significant inhibition of melanoma cells and antimicrobial potential (against Staphylococcus aureus, Escherichia coli, and Candida albicans). The combination of the extracts resulted in a significant increase in the inhibition of selected microbial and melanoma cells WM-266-4 compared to the control. Cell viability decreased below 60% when mixG extract was applied. Antimicrobial activity has been confirmed.
The prevention and treatment of skin diseases remains a major challenge in medicine. The search for natural active ingredients that can be used to prevent the development of the disease and complement treatment is on the rise. Natural extracts of ginger and hemp offer a wide range of bioactive compounds with potential health benefits. This study evaluates the effectiveness of hemp and ginger extract as a supportive treatment for skin diseases. It reports a synergistic effect of hemp and ginger extract. The contents of cannabinoids and components of ginger are determined, with the highest being CBD (587.17 ± 8.32 µg/g) and 6-gingerol (60.07 ± 0.40 µg/g). The minimum inhibitory concentration for Staphylococcus aureus (156.5 µg/mL), Escherichia coli (625.2 µg/mL) and Candida albicans (78.3 µg/mL) was also analyzed. Analysis of WM-266-4 cells revealed the greatest decrease in metabolic activity in cells exposed to the extract at a concentration of 1.00 µg/mL. Regarding the expression of genes associated with cellular processes, melanoma aggressiveness, resistance and cell survival, a significant difference was found in the expression of ABCB5, CAV1 and S100A9 compared with the control (cells not exposed to the extract).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.