Turbulence plays a key role in the conversion of the energy of large-scale fields and flows to plasma heat, impacting the macroscopic evolution of the heliosphere and other astrophysical plasma systems. Although we have long been able to make direct spacecraft measurements of all aspects of the electromagnetic field and plasma fluctuations in near-Earth space, our understanding of the physical mechanisms responsible for the damping of the turbulent fluctuations in heliospheric plasmas remains incomplete. Here we propose an innovative field–particle correlation technique that can be used to measure directly the secular energy transfer from fields to particles associated with collisionless damping of the turbulent fluctuations. Furthermore, this novel procedure yields information about the collisionless energy transfer as a function of particle velocity, providing vital new information that can help to identify the dominant collisionless mechanism governing the damping of the turbulent fluctuations. Kinetic plasma theory is used to devise the appropriate correlation to diagnose Landau damping, and the field–particle correlation technique is thoroughly illustrated using the simplified case of the Landau damping of Langmuir waves in a 1D-1V (one dimension in physical space and one dimension in velocity space) Vlasov–Poisson plasma. Generalizations necessary to apply the field–particle correlation technique to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, highlighting several caveats. This novel field–particle correlation technique is intended to be used as a primary analysis tool for measurements from current, upcoming and proposed spacecraft missions that are focused on the kinetic microphysics of weakly collisional heliospheric plasmas, including the Magnetospheric Multiscale (MMS), Solar Probe Plus, Solar Orbiter and Turbulence Heating ObserveR (THOR) missions.
Plasma turbulence is ubiquitous in space and astrophysical plasmas, playing an important role in plasma energization, but the physical mechanisms leading to dissipation of the turbulent energy remain to be definitively identified. Kinetic simulations in two dimensions (2D) have been extensively used to study the dissipation process. How the limitation to 2D affects energy dissipation remains unclear. This work provides a model of comparison between two-and threedimensional (3D) plasma turbulence using gyrokinetic simulations; it also explores the dynamics of distribution functions during the dissipation process. It is found that both 2D and 3D nonlinear gyrokinetic simulations of a low-beta plasma generate electron velocity-space structures with the same characteristics as that of linear Landau damping of Alfvén waves in a 3D linear simulation. The continual occurrence of the velocity-space structures throughout the turbulence simulations suggests that the action of Landau damping may be responsible for the turbulent energy transfer to electrons in both 2D and 3D, and makes possible the subsequent irreversible heating of the plasma through collisional smoothing of the velocity-space fluctuations. Although, in the 2D case where variation along the equilibrium magnetic field is absent, it may be expected that Landau damping is not possible, a common trigonometric factor appears in the 2D resonant denominator, leaving the resonance condition unchanged from the 3D case. The evolution of the 2D and 3D cases is qualitatively similar. However, quantitatively the nonlinear energy cascade and subsequent dissipation is significantly slower in the 2D case.
The orientation and stability of the reconnection x line in asymmetric geometry is studied using three-dimensional (3-D) particle-in-cell simulations. We initiate reconnection at the center of a large simulation domain to minimize the boundary effect. The resulting x line has sufficient freedom to develop along an optimal orientation, and it remains laminar. Companion 2-D simulations indicate that this x line orientation maximizes the reconnection rate. The divergence of the nongyrotropic pressure tensor breaks the frozen-in condition, consistent with its 2-D counterpart. We then design 3-D simulations with one dimension being short to fix the x line orientation but long enough to allow the growth of the fastest growing oblique tearing modes. This numerical experiment suggests that reconnection tends to radiate secondary oblique tearing modes if it is externally (globally) forced to proceed along an orientation not favored by the local physics. The development of oblique structure easily leads to turbulence inside small periodic systems.
Magnetic reconnection has been suggested to play an important role in the dynamics and energetics of plasma turbulence by spacecraft observations, simulations and theory over the past two decades, and recently, by magnetosheath observations of MMS. A new method based on magnetic flux transport (MFT) has been developed to identify reconnection activity in turbulent plasmas. This method is applied to a gyrokinetic simulation of two-dimensional (2D) plasma turbulence. Results on the identification of three active reconnection X-points are reported. The first two X-points have developed bi-directional electron outflow jets. Beyond the category of electron-only reconnection, the third X-point does not have bi-directional electron outflow jets because the flow is modified by turbulence. In all cases, this method successfully identifies active reconnection through clear inward and outward flux transport around the X-points. This transport pattern defines reconnection and produces a new quadrupolar structure in the divergence of MFT. This method is expected to be applicable to spacecraft missions such as MMS, Parker Solar Probe, and Solar Orbiter.
Three‐dimensional X‐line spreading is important for the coupling between global dynamics and local kinetic physics of magnetic reconnection. Using large‐scale 3‐D particle‐in‐cell simulations, we investigate the spreading of the X‐line out of the reconnection plane under a strong guide field in asymmetric reconnection. The X‐line spreading speed depends strongly on the equilibrium current sheet thickness. In a simulation with a thick, ion‐scale equilibrium current sheet (CS), the X‐line spreads at the ambient species drift speeds, which are significantly lower than the Alfvén speed based on the guide field VAg(sub‐Alfvénic spreading). In simulations with a sub‐ion‐scale CS, the X‐line spreads at VAg instead (Alfvénic spreading). An Alfvénic signal consistent with kinetic Alfvén waves develops and propagates, leading to CS thinning and extending, which ultimately causes reconnection onset. The continuous onset of reconnection along the propagation direction of the signal manifests as Alfvénic X‐line spreading. The strong dependence on the CS thickness of the spreading speeds and the orientation of the X‐line are consistent with the collisionless tearing instability. Our simulations indicate that when the collisionless tearing growth is sufficiently strong in a thinner CS such that γfalse/normalΩci≳scriptOfalse(1false), Alfvénic X‐line spreading can effectively take place. Our results compare favorably with a number of numerical simulations and recent magnetopause observations. An important implication of this work is that the magnetopause CS is typically too thick for the X‐line to spread at the Alfvén speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.