The hot-phonon bottleneck effect in lead-halide perovskites (APbX3) prolongs the cooling period of hot charge carriers, an effect that could be used in the next-generation photovoltaics devices. Using ultrafast optical characterization and first-principle calculations, four kinds of lead-halide perovskites (A=FA+/MA+/Cs+, X=I−/Br−) are compared in this study to reveal the carrier-phonon dynamics within. Here we show a stronger phonon bottleneck effect in hybrid perovskites than in their inorganic counterparts. Compared with the caesium-based system, a 10 times slower carrier-phonon relaxation rate is observed in FAPbI3. The up-conversion of low-energy phonons is proposed to be responsible for the bottleneck effect. The presence of organic cations introduces overlapping phonon branches and facilitates the up-transition of low-energy modes. The blocking of phonon propagation associated with an ultralow thermal conductivity of the material also increases the overall up-conversion efficiency. This result also suggests a new and general method for achieving long-lived hot carriers in materials.
Thioflavin T (ThT) dye fluorescence is used regularly to quantify the formation and inhibition of amyloid fibrils in the presence of anti-amyloidogenic compounds such as polyphenols. However, in this study, it was shown, using three polyphenolics (curcumin, quercetin and resveratrol), that ThT fluorescence should be used with caution in the presence of such exogenous compounds. The strong absorptive and fluorescent properties of quercetin and curcumin were found to significantly bias the ThT fluorescence readings in both in situ real-time ThT assays and single time-point dilution ThT-type assays. The presence of curcumin at concentrations as low as 0.01 and 1 lm was sufficient to interfere with the ThT fluorescence associated with fibrillar amyloid-b(1-42) (0.5 lm) and fibrillar reduced and carboxymethylated j-casein (50 lm), respectively. The ThT fluorescence associated with fibrillar amyloid-b(1-42) was also biased using higher concentrations of resveratrol, a polyphenol that is not spectroscopically active at the wavelengths of ThT fluorescence, implying that there can be direct interactions between ThT and the exogenous compound and ⁄ or competitive binding with ThT for the fibrils. Thus, in all cases where ThT is used in the presence of an exogenous compound, biases for amyloid-associated ThT fluorescence should be tested, regardless of whether the additive is spectroscopically active. Simple methods to conduct these tests were described. The Congo red spectral shift assay is demonstrated as a more viable spectrophotometric alternative to ThT, but allied methods, such as transmission electron microscopy, should also be used to assess fibril formation independently of dye-based assays. Abbreviations CR, congo red; RCMj-CN, reduced and carboxymethylated j-casein; TEM, transmission electron microscopy; ThT, thioflavin T.
Coherent anti-Stokes Raman scattering (CARS) microscopy is emerging as a powerful method for imaging materials and biological systems, partly because of its noninvasiveness and selective chemical sensitivity. However, its full potential for species-selective imaging is limited by a restricted spectral bandwidth. Recent increases in bandwidth are promising but still are not sufficient for the level of robust component discrimination that would be needed in a chemically complex milieu found, for example, in intracellular and extracellular environments. We demonstrate a truly broadband CARS imaging instrument that we use to acquire hyperspectral images with vibrational spectra over a bandwidth of 2500 cm(-1) with a resolution of 13 cm(-1).
Femtosecond fluorescence upconversion experiments were performed on the naturally occurring medicinal pigment, curcumin, in anionic, cationic, and neutral micelles. In our studies, the micelles are composed of sodium dodecyl sulfate (SDS), dodecyl trimethyl ammonium bromide (DTAB), and triton X-100 (TX-100). We demonstrate that the excited-state kinetics of curcumin in micelles have a fast (3−8 ps) and slow (50−80 ps) component. While deuteration of curcumin has a negligible effect on the fast component, the slow component exhibits a pronounced isotope effect of ∼1.6, indicating that micelle-captured curcumin undergoes excited-state intramolecular hydrogen atom transfer. Studies of solvation dynamics of curcumin in a 10 ps time window reveal a fast component (≤300 fs) followed by a 8, 6, and 3 ps component in the solvation correlation function for the TX-100, DTAB, and SDS micelles, respectively. October 23, 2009; ReVised Manuscript ReceiVed: January 4, 2010 Femtosecond fluorescence upconversion experiments were performed on the naturally occurring medicinal pigment, curcumin, in anionic, cationic, and neutral micelles. In our studies, the micelles are composed of sodium dodecyl sulfate (SDS), dodecyl trimethyl ammonium bromide (DTAB), and triton X-100 (TX-100). We demonstrate that the excited-state kinetics of curcumin in micelles have a fast (3-8 ps) and slow (50-80 ps) component. While deuteration of curcumin has a negligible effect on the fast component, the slow component exhibits a pronounced isotope effect of ∼1.6, indicating that micelle-captured curcumin undergoes excited-state intramolecular hydrogen atom transfer. Studies of solvation dynamics of curcumin in a 10 ps time window reveal a fast component (e300 fs) followed by a 8, 6, and 3 ps component in the solvation correlation function for the TX-100, DTAB, and SDS micelles, respectively. Keywords
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.