We study an optimal investment problem under a joint limited expected relative loss and portfolio insurance constraint with a general random benchmark. By making use of a static Lagrangian method in a complete market setting, the optimal wealth and investment strategy can be fully determined along with the existence and uniqueness of the Lagrangian multipliers. Our numerical demonstration for various commonly used random benchmarks shows a trade-off between the portfolio outperformance and underperformance relative to the benchmark, which may not be captured by the widely used Omega ratio and its utility-transformed version, reflecting the impact of the benchmarking loss constraint. Furthermore, we develop a new portfolio performance measurement indicator that incorporates the agent’s utility loss aversion relative to the benchmark via solving an equivalent optimal asset allocation problem with a benchmark-reference-based preference. We show that the expected utility performance is well depicted by looking at this new portfolio performance ratio, suggesting a more suitable portfolio performance measurement under a limited loss constraint relative to a possibly random benchmark.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.