In the production of semiconductors, ultrapure water is used for cleaning in each process. In recent years, the adverse effects of impurities in ultrapure water for cleaning have increased with the miniaturization and high integration of the circuit-line width of semiconductors. Therefore the demand for high-quality ultrapure water has increased. We examined the metal adhesion restraint on silicon wafers based on the adsorption of polystyrene sulfonate (PSA) and metal ions. PSA was microinjected into a sample of ultrapure water containing the metal, and a cleaning vessel was allowed to overflow with the sample. Subsequently, the wafers in the sample were immersed and the amount of the metal deposited on them was measured. In addition sulfur concentration was calculated. It was found that the adhesion of the metal ions adsorbed with PSA in ultrapure water on the wafers is suppressed. A metal adhesion restraint rate greater than 95% was obtained with the polyvalent metal ions. Furthermore, it was revealed that the adhesion of PSA to the wafer was negligible. We may apply this technique as a metal contamination restraint method for each cleaning process in the production of semiconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.