This paper presents the angle of the shoulder joint as basic research for developing a machine interface using EEG. The raw EEG voltage signals and power density spectrum of the voltage value were used as the learning feature. Hebbian learning was used on a multilayer perceptron network for pattern classification for the estimation of joint angles 0o, 90o and 180o of the shoulder joint. Experimental results showed that it was possible to correctly classify up to 63.3% of motion using voltage values of the raw EEG signal with the neural network. Further, with selected electrodes and power density spectrum features, accuracy rose to 93.3% with more stable motion estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.