We tested the hypothesis that a force reduction in hyperthyroid rat soleus muscle would be associated with oxidative modification in myosin heavy chain (MHC). Daily injection of thyroid hormone [3,5,3'-triiodo-L-thyronine (T3)] for 21 days depressed isometric forces of whole soleus muscle across a range of stimulus frequencies (P < 0.01). In fiber bundles, hyperthyroidism also led to pronounced reductions (P < 0.01) in both K+ - and 4-chloro-m-cresol-induced contracture forces. The degrees of the reductions were similar between these two contractures that were induced by distinct reagents. Treatment with T3 elicited a significant decrease ( approximately 14%; P < 0.05) in the relative content of MHC contained in myofibrillar proteins. The content of carbonyl groups in myofibrillar protein extracts was elevated (P < 0.05) by approximately 50% in T3-treated muscles. Immunoblot analyses on T3-treated muscles showed a greater increase (106%; P < 0.05) of the carbonyl content in MHC than in myofibrillar protein extracts. These data suggest that in hyperthyroidism the decrease in force production of skeletal muscles may stem primarily from failure in myofibrillar protein function resulting from oxidative modification of MHC.
With the progress of optogenetics, the activities of genetically identified neurons can be optically silenced to determine whether the neurons in question are necessary for the network performance of the behavioral expression. This logical induction is expected to be improved by the application of the Na+ pump rhodopsins (NaRs), which hyperpolarize the membrane potential with negligible influence on the ionic/pH balance. Here, we made several chimeric NaRs between two NaRs, KR2 and IaNaR from Krokinobacter eikastus and Indibacter alkaliphilus, respectively. We found that one of these chimeras, named I1K6NaR, exhibited some improvements in the membrane targeting and photocurrent properties over native NaRs. The I1K6NaR-expressing cortical neurons were stably silenced by green light irradiation for a certain long duration. With its rapid kinetics and voltage dependency, the photoactivation of I1K6NaR would specifically counteract the generation of action potentials with less hyperpolarization of the neuronal membrane potential than KR2.
We have investigated the effect of calcium spirulan (Ca-SP) isolated from a blue-green alga, Spirulina platensis, which is a sulfated polysaccharide chelating calcium and mainly composed of rhamnose, on invasion of B16-BL6 melanoma, Colon 26 M3.1 carcinoma and HT-1080 fibrosarcoma cells through reconstituted basement membrane (Matrigel). Ca-SP significantly inhibited the invasion of these tumor cells through Matrigel/fibronectin-coated filters. Ca-SP also inhibited the haptotactic migration of tumor cells to laminin, but it had no effect on that to fibronectin. Ca-SP prevented the adhesion of B16-BL6 cells to Matrigel and laminin substrates but did not affect the adhesion to fibronectin. The pretreatment of tumor cells with Ca-SP inhibited the adhesion to laminin, while the pretreatment of laminin substrates did not. Ca-SP had no effect on the production and activation of type IV collagenase in gelatin zymography. In contrast, Ca-SP significantly inhibited degradation of heparan sulfate by purified heparanase. The experimental lung metastasis was significantly reduced by co-injection of B16-BL6 cells with Ca-SP. Seven intermittent i.v. injections of 100 microg of Ca-SP caused a marked decrease of lung tumor colonization of B16-BL6 cells in a spontaneous lung metastasis model. These results suggest that Ca-SP, a novel sulfated polysaccharide, could reduce the lung metastasis of B16-BL6 melanoma cells, by inhibiting the tumor invasion of basement membrane probably through the prevention of the adhesion and migration of tumor cells to laminin substrate and of the heparanase activity.
The present study investigated the effects of eccentric muscle contractions (ECC) on the content of myofibrillar proteins (my-proteins) and the catalytic activity of myofibrillar ATPase (my-ATPase) in skeletal muscles. Rat extensor digitorum longus and tibialis anterior muscles were exposed to 200-repeated ECC or isometric contractions (ISC) and used for measures of force output and for biochemical analyses, respectively. Whereas in ISC-treated muscles, full restoration of tetanic force was attained after 2 days of recovery, force developed by ECC-treated muscles remained depressed (P < 0.05) after 6 days. The total my-protein content and the relative content of myosin heavy chain (MHC) in total my-proteins were unaltered during 4 days of recovery after ECC, but fell (P < 0.05) to 55.9 and 63.4% after 6 days of recovery, respectively. my-ATPase activity expressed on a my-protein weight basis was unaltered immediately after ECC. However, it decreased (P < 0.05) to 75.3, 45.3, and 49.3% after 2, 4 and 6 days of recovery, respectively. Total maximal calpain activity measured at 5 mM Ca(2+) was significantly augmented (P < 0.05) after 2 days of recovery, reaching a level of threefold higher after 6 days. These alterations were specific for ECC and not observed for ISC. These results suggest that depressions in my-ATPase activity contribute to ECC-induced decreases in force and power which can take a number of days to recover.
The purpose of the present study was to test the hypothesis that administration of thyroid hormone [3,5,3'-triiodo-L-thyronine (T(3))] could result in oxidation of myofibrillar proteins and, in turn, induce alterations in respiratory muscle function. Daily injection of T(3) for 21 days depressed isometric forces of diaphragm fiber bundles across a range of stimulus frequencies (1, 10, 20, 40, 75, and 100 Hz) (P < 0.05). These reductions in force production were accompanied by a remarkable increment (104%; P < 0.05) in carbonyl groups of myofibrillar proteins. In contrast, T(3) treatment has no effects on the carbonyl content in myosin heavy chain. In additional experiments, we have also tested the efficacy of carvedilol, a nonselective beta(1)- beta(2)-blocker that possesses antioxidative properties. Treatment with carvedilol dramatically improved isometric tetanic force production at stimulus frequencies from 40 to 100 Hz (P < 0.05). Carvedilol also prevented T(3)-induced contractile protein oxidation (P < 0.05). These data suggest that the oxidative modification of myofibrillar proteins may account, at least in part, for an impairment of diaphragm in hyperthyroidism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.