We present a new nonlinear mode decomposition method to visualize the decomposed flow fields, named the mode decomposing convolutional neural network (MD-CNN). The proposed method is applied to a flow around a circular cylinder at Re D = 100 as a test case. The flow attributes are mapped into two modes in the latent space and then these two modes are visualized in the physical space. Since the MD-CNNs with nonlinear activation functions show lower reconstruction errors than the proper orthogonal decomposition (POD), the nonlinearity contained in the activation function is considered the key to improve the capability of the model. It is found by applying POD to each field decomposed using the MD-CNN with hyperbolic tangent activation that a single nonlinear MD-CNN mode contains multiple orthogonal bases, in contrast to the linear methods, i.e., POD and MD-CNN with linear activation. The present results suggest a great potential for the nonlinear MD-CNN to be used for feature extraction of flow fields in lower dimension than POD, while retaining interpretable relationships with the conventional POD modes.
The development of axons and dendrites is controlled by small GTP-binding proteins of the Rho family, but the upstream signaling mechanisms responsible for such regulation remain unclear. We have now investigated the role of the transmembrane protein cluster of differentiation 47 (CD47) in this process with hippocampal neurons. CD47-deficient neurons manifested markedly impaired development of dendrites and axons, whereas overexpression of CD47 promoted such development. Interaction of SH2 domain-containing protein tyrosine phosphatase substrate-1 (SHPS-1) with CD47 also induced the formation of dendritic filopodia and spines. These effects of CD47 were prevented by inhibition of either cell division cycle 42 (Cdc42) or Rac. In CD47-deficient neurons, autophosphorylation of Src was markedly reduced. In addition, overexpression of CD47 promoted the autophosphorylation of Src. Inhibition of Src family kinases indeed prevented CD47-promoted dendritic development. Inhibition of either FGD1-related Cdc42-guanine nucleotide exchange factor (GEF) (FRG) or Vav2, which is a GEF for Cdc42 and Rac and is activated by Src, also prevented the effects of CD47 on dendritic development. These results indicate that CD47 promotes development of dendrites and axons in hippocampal neurons in a manner dependent, at least in part, on activation of Cdc42 and Rac mediated by Src as well as by FRG and Vav2.
The present large-scale clinical survey revealed current epidemiological trends for idiopathic sudden sensorineural hearing loss (SSNHL) and various factors associated with the severity of hearing impairment and prognosis.
The vancomycin-resistant enterococci GV1, GV2 and GV3, which were isolated from droppings from broiler farms in Japan have been characterized as VanA-type VRE, which express high-level vancomycin resistance (256 or 512 microg ml(-1), MIC) and low-level teicoplanin resistance (1 or 2 microg ml(-1), MIC). The vancomycin resistances were encoded on plasmids. The vancomycin resistance conjugative plasmid pMG2 was isolated from the GV2 strain. The VanA determinant of pMG2 showed the same genetic organization as that of the VanA genes encoded on the representative transposon Tn1546, which comprises vanRSHAXYZ. The nucleotide sequences of all the genes, except the gene related to the vanS gene on Tn1546, were completely identical to the genes encoded on Tn1546. Three amino acid substitutions in the N-terminal region of the deduced VanS were detected in the nucleotide sequence of vanS encoded on pMG2. There were also three amino acid substitutions in the vanS gene of the GV1 and GV3 strains in the same positions as in the vanS gene of pMG2. Vancomycin induced the increased teicoplanin resistance in these strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.