The objective of this study was to evaluate the effects of a complex of beta-tricalcium phosphate (beta-TCP) granules and 3.5% hyaluronate (beta-TCP granules-HY complex) compared with a beta-TCP block, in terms of osteoconductivity and biodegradability, to determine whether this complex would be a good candidate for bone void filler. Both materials were implanted into cavities drilled in rabbit femoral condyles. New bone formation and mineral apposition rate were evaluated to analyze osteoconductivity, whereas residual beta-TCP within the defects and tartrate-resistant acid phosphatase (TRAP) cellular activity were studied for beta-TCP resorption. The results show that both the beta-TCP block and the beta-TCP granules-HY complex support bone ingrowth; however, bioresorption was rapid for beta-TCP granules-HY but weak for beta-TCP block. This biodegradation mechanism was considered to be a cell-mediated disintegration by numerous TRAP-positive giant cells. The time lag between the peak value of TRAP-positive giant cell population and that of new bone formation rate suggests that a coupling-like phenomenon could be occurring in the beta-TCP-filled bone defects. In addition, beta-TCP granules-HY complex, which is an injectable, pastelike material, has similar osteoconductive properties to beta-TCP block. Thus, this complex may be useful as a bone filler in clinical application.
These results suggest that reductions in the degree of mineralization and enzymatic cross-links and excessive formation of pentosidine may play an important role in explaining poor bone quality in osteoporosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.