SummaryThe RIN gene encodes a putative MADS box transcription factor that controls tomato fruit ripening, and its ripening inhibitor (rin) mutation yields non-ripening fruit. In this study, the molecular properties of RIN and the rin mutant protein were clarified. The results revealed that the RIN protein accumulates in ripening fruit specifically and is localized in the nucleus of the cell. In vitro studies revealed that RIN forms a stable homodimer that binds to MADS domain-specific DNA sites. Analysis of binding site selection experiments revealed that the consensus binding sites of RIN highly resemble those of the SEPALLATA (SEP) proteins, which are Arabidopsis MADS box proteins that control the identity of floral organs. RIN exhibited a transcriptionactivating function similar to that exhibited by the SEP proteins. These results indicate that RIN exhibits similar molecular functions to SEP proteins although they play distinctly different biological roles. In vivo assays revealed that RIN binds to the cis-element of LeACS2. Our results also revealed that the rin mutant protein accumulates in the mutant fruit and exhibits a DNA-binding activity similar to that exhibited by the wild-type protein, but has lost its transcription-activating function, which in turn would inhibit ripening in mutant fruit.
The tomato (Solanum lycopersicum) MADS box FRUITFULL homologs FUL1 and FUL2 act as key ripening regulators and interact with the master regulator MADS box protein RIPENING INHIBITOR (RIN). Here, we report the large-scale identification of direct targets of FUL1 and FUL2 by transcriptome analysis of FUL1/FUL2 suppressed fruits and chromatin immunoprecipitation coupled with microarray analysis (ChIP-chip) targeting tomato gene promoters. The ChIP-chip and transcriptome analysis identified FUL1/FUL2 target genes that contain at least one genomic region bound by FUL1 or FUL2 (regions that occur mainly in their promoters) and exhibit FUL1/FUL2-dependent expression during ripening. These analyses identified 860 direct FUL1 targets and 878 direct FUL2 targets; this set of genes includes both direct targets of RIN and nontargets of RIN. Functional classification of the FUL1/FUL2 targets revealed that these FUL homologs function in many biological processes via the regulation of ripeningrelated gene expression, both in cooperation with and independent of RIN. Our in vitro assay showed that the FUL homologs, RIN, and tomato AGAMOUS-LIKE1 form DNA binding complexes, suggesting that tetramer complexes of these MADS box proteins are mainly responsible for the regulation of ripening.
Abscission in plants is a crucial process used to shed organs such as leaves, flowers, and fruits when they are senescent, damaged, or mature. Abscission occurs at predetermined positions called abscission zones (AZs). Although the regulation of fruit abscission is essential for agriculture, the developmental mechanisms remain unclear. Here, we describe a novel transcription factor regulating the development of tomato (Solanum lycopersicum) pedicel AZs. We found that the development of tomato pedicel AZs requires the gene MACROCALYX (MC), which was previously identified as a sepal size regulator and encodes a MADS-box transcription factor. MC has significant sequence similarity to Arabidopsis (Arabidopsis thaliana) FRUITFULL, which is involved in the regulation of fruit dehiscent zone development. The MC protein interacted physically with another MADS-box protein, JOINTLESS, which is known as a regulator of fruit abscission; the resulting heterodimer acquired a specific DNA-binding activity. Transcriptome analyses of pedicels at the preabscission stage revealed that the expression of the genes involved in phytohormone-related functions, cell wall modifications, fatty acid metabolism, and transcription factors is regulated by MC and JOINTLESS. The regulated genes include homologs of Arabidopsis WUSCHEL, REGULATOR OF AXILLARY MERISTEMS, CUP-SHAPED COTYLEDON, and LATERAL SUPPRESSOR. These Arabidopsis genes encode well-characterized transcription factors regulating meristem maintenance, axillary meristem development, and boundary formation in plant tissues. The tomato homologs were specifically expressed in AZs but not in other pedicel tissues, suggesting that these transcription factors may play key roles in pedicel AZ development.
The physiological and biochemical changes in fruit ripening produce key attributes of fruit quality including color, taste, aroma and texture. These changes are driven by the highly regulated and synchronized activation of a huge number of ripening-associated genes. In tomato (Solanum lycopersicum), a typical climacteric fruit, the MADS-box transcription factor RIN is one of the earliest-acting ripening regulators, required for both ethylene-dependent and ethylene-independent pathways. Although we previously identified several direct RIN targets, many additional targets remain unidentified, likely including key ripening-associated genes. Here, we report the identification of novel RIN targets by transcriptome and chromatin immunoprecipitation (ChIP) analyses. Transcriptome comparisons by microarray of wild-type and rin mutant tomatoes identified 342 positively regulated genes and 473 negatively regulated genes by RIN during ripening. Most of the positively regulated genes contained possible RIN-binding (CArG-box) sequences in their promoters. Subsequently, we selected six genes from the positively regulated genes and a ripening regulator gene, CNR, and assayed their promoters by quantitative ChIP-PCR to examine RIN binding. All of the seven genes, which are involved in cell wall modification, aroma and flavor development, pathogen defense and transcriptional regulation during ripening, are targets of RIN, suggesting that RIN may control multiple diverse ripening processes. In particular, RIN directly regulates the expression of the ripening-associated transcription factors, CNR, TDR4 and a GRAS family gene, providing an important clue to elucidate the complicated transcriptional cascade for fruit ripening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.