The photoreaction of a silyl iron complex Cp(CO)2Fe(SiMe3) (1) in acetonitrile in the presence of P(NMeCH2)2(OMe) (L) yielded Cp(CO)LFeMe (2), CpL2FeMe (3), and CpL2Fe(CN) (4), showing that carbon−carbon bond cleavage of acetonitrile was achieved. These C−C bond cleavage products were also obtained in the photoreaction of 1 with 1 equiv of MeCN in THF in the presence of L. The reaction with CD3CN showed that the methyl group on the iron in the products is derived from acetonitrile. The corresponding reaction of Cp(CO)2Fe(ER3) (ER3 = CH3, GeMe3, SnMe3) generated a CO/L exchange complex, Cp(CO)LFe(ER3), showing that a silyl ligand on the iron is indispensable for the C−C bond cleavage of acetonitrile. Theoretical studies on the C−C bond cleavage were performed using the hybrid DFT-B3LYP method. The direct C−C bond oxidative addition of acetonitrile to the 16e species Cp(CO)Fe(SiMe3) expected to readily form from 1 in the photoreaction conditions has a very high activation barrier of 52.7 kcal/mol, suggesting that the oxidative addition is not an appropriate reaction pathway. A more feasible pathway was proposed. The end-on coordination of acetonitrile nitrogen to Cp(CO)Fe(SiMe3), followed by the rearrangement to a CN side-on complex, with the activation energy of 14.8 kcal/mol occurs, and then the insertion of the CN bond into the Fe−Si bond with a small activation energy of 4.0 kcal/mol and the successive C−C bond cleavage of acetonitrile on the Fe coordination sphere with the activation energy of 15.0 kcal/mol take place to give Cp(CO)MeFe(CNSiMe3). The isolation of an iron complex with a methyl group derived from acetonitrile and a silylisocyanide ligand was attained in the photoreaction of Cp(CO)2Fe(SiPh3) in MeCN in the presence of PPh3. The product Cp (PPh3)MeFe(CNSiPh3) was confirmed by the X-ray structure analysis. The reaction mechanism leading to the iron cyanide complex has also been discussed.
In this paper, we demonstrate the multiple points of innovation when combining blockchain technology with Internet of Things (IoT) and security frameworks. The deployment and use of IoT device networks in smart city environments has produced an enormous amount of data. The fact that those data are possessed by multiple sources that use independent systems for data collection, storage, and use impedes the exploitation of their value. Blockchains, as distributed ledgers, can be used for addressing the development of a universal system for data collection and distribution. Smart contracts can be used to automate all the processes of such a network, while at the same time, blockchain and the InterPlanetary File System (IPFS) protect sensitive data through anonymity and distributed storage. An innovative and open IoT blockchain market of applications, data, and services is proposed that: (i) provides the framework upon which objects and people can exchange value in form of virtual currencies, for assets (data and services) received; (ii) defines the motivation incentives according to social and business context for humans and smart objects to interact. The specific marketplace is piloted through a cross-border trial between Santander and Fujisawa, in the context of the M-Sec project, validating thus the interoperability, efficiency, and data protection principles.
This paper presents a nonlinear controller for electric power assist systems based on the sliding mode control. The proposed sliding mode controller is designed to achieve desired nonlinear properties including gravitational effect with robustness against disturbances such as friction force and modeling errors. Furthermore, so-called reaching phase is positively utilized so that the operator can feel disturbance torque of relatively large amplitude which should be noticed as information about environment, for example, when hitting an obstacle accidentally. Although the reaching phase can be designed from several points of view, the dynamics in the reaching phase is linearlized in order to use fruitful linear control theories such as H-infinity theory.
Roads are becoming deterioration in everywhere. In some places, traffic marks painted on roads are damaged thus needed to be updated. Municipalities must manage road condition and traffic marks (road painting). It is the municipalities task to manage those roads using, for example, special inspection cars and human eyes. However, the management cost is high if a city contains many roads. This paper proposes a mechanism that automates this management. Our idea is to leverage cameras attached to garbage trucks, which run through the entire city almost everyday. The mechanism collects road images and detects damaged traffic marks using an image recognition algorithm. This paper shows the algorithm and reports the benchmark results. The benchmark showed that the mechanism can detect the damaged traffic marks with 76.6% precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.