This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Runt-related transcription factor 2 (Runx2), a regulator of osteoblast differentiation, is pathologically involved in vascular calcification; however, the significance of Runx2 in cardiac homeostasis remains unclear. Here, we investigated the roles of Runx2 in cardiac remodeling after myocardial infarction (MI). The expression of Runx2 mRNA and protein was upregulated in murine hearts after MI. Runx2 was expressed in heart-infiltrating myeloid cells, especially in macrophages, at the border zone of post-infarct myocardium. To analyze the biological functions of Runx2 in cardiac remodeling, myeloid cell-specific Runx2 deficient (CKO) mice were exposed to MI. After MI, ventricular weight/tibia length ratio was increased in CKO mice, concomitant with severe cardiac dysfunction. Cardiac fibrosis was exacerbated in CKO mice, consistent with the upregulation of collagen 1a1 expression. Mechanistically, immunohistochemical analysis using anti-CD31 antibody showed that capillary density was decreased in CKO mice. Additionally, conditioned culture media of myeloid cells from Runx2 deficient mice exposed to MI induced the tube formation of vascular endothelial cells to a lesser extent than those from control mice. RNA-sequence showed that the expression of pro-angiogenic or anti-angiogenic factors was altered in macrophages from Runx2-deficient mice. Collectively, Runx2+ myeloid cells infiltrate into post-infarct myocardium and prevent adverse cardiac remodeling, at least partially, by regulating endothelial cell function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.