BackgroundRett syndrome (RTT) is a characteristic neurological disease presenting with regressive loss of neurodevelopmental milestones. Typical RTT is generally caused by abnormality of methyl-CpG binding protein 2 (MECP2). Our objective to investigate the genetic landscape of MECP2-negative typical/atypical RTT and RTT-like phenotypes using whole exome sequencing (WES).MethodsWe performed WES on 77 MECP2-negative patients either with typical RTT (n=11), atypical RTT (n=22) or RTT-like phenotypes (n=44) incompatible with the RTT criteria.ResultsPathogenic or likely pathogenic single-nucleotide variants in 28 known genes were found in 39 of 77 (50.6%) patients. WES-based CNV analysis revealed pathogenic deletions involving six known genes (including MECP2) in 8 of 77 (10.4%) patients. Overall, diagnostic yield was 47 of 77 (61.0 %). Furthermore, strong candidate variants were found in four novel genes: a de novo variant in each of ATPase H+ transporting V0 subunit A1 (ATP6V0A1), ubiquitin-specific peptidase 8 (USP8) and microtubule-associated serine/threonine kinase 3 (MAST3), as well as biallelic variants in nuclear receptor corepressor 2 (NCOR2).ConclusionsOur study provides a new landscape including additional genetic variants contributing to RTT-like phenotypes, highlighting the importance of comprehensive genetic analysis.
Mutations in the m.13094T>C MT-ND5 gene have been previously described in three cases of Leigh Syndrome (LS). In this retrospective, international cohort study we identified 20 clinically affected individuals (13 families) and four asymptomatic carriers. Ten patients were deceased at the time of analysis (median age of death was 10 years (range: 5·4 months−37 years, IQR = 17·9 years). Nine patients manifested with LS, one with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), and one with Leber hereditary optic neuropathy. The remaining nine patients presented with either overlapping syndromes or isolated neurological symptoms. Mitochondrial respiratory chain activity analysis was normal in five out of ten muscle biopsies. We confirmed maternal inheritance in six families, and demonstrated marked variability in tissue segregation, and phenotypic expression at relatively low blood mutant loads. Neuropathological studies of two patients manifesting with LS/MELAS showed prominent capillary proliferation, microvacuolation and severe neuronal cell loss in the brainstem and cerebellum, with conspicuous absence of basal ganglia involvement. These findings suggest that whole mtDNA genome sequencing should be considered in patients with suspected mitochondrial disease presenting with complex neurological manifestations, which would identify over 300 known pathogenic variants including the m.13094T>C.
Summary We report a 2‐year‐old girl who had repeated febrile or afebrile seizures since infancy. Prolonged left/right hemiconvulsions and myoclonus of the eyelids/extremities with generalization to tonic–clonic seizures, were refractory to antiepileptic agents. At age 1 year and 4 months, she contracted rotavirus infection, and developed status epilepticus with persistent right hemiclonic seizures. Left unilateral brain edema with subsequent emergence of cortical laminar necrosis and white matter lesions, and progressive atrophy of the left cerebral hemisphere were noted during this period. She showed residual right hemiparesis and mild intellectual disability, and had generalized/eyelid myoclonia and hot water epilepsy after a 5‐month seizure‐free period. Analysis for SCN1A, the gene encoding the neuronal voltage‐gated Na+ channel α1 subunit revealed a nonsense mutation, R1892X. These indicate the potential risk in patients with severe myoclonic epilepsy in infancy (SMEI) to develop hemiconvulsion–hemiplegia (HH) syndrome. SCN1A mutations may need to be further explored in patients with HH syndrome without features of SMEI.
Transmantle dysplasia is a rare type of focal cortical dysplasia (FCD) characterized by expansion of the cortex from the deep white matter to the surface and in which there is a FCD IIA or IIB pathologic pattern. To characterize possible mechanisms underlying this regional disorder of radial migrating cells, we studied the expression patterns of neocortical layer-specific markers using immunohistochemistry in surgical specimens from 5 FCD IIA and 4 FCD IIB cases in children. All neuronal cells expressed the mature neuron marker MAP2/2B but not the microglia markers Iba-1 and CD68. Some layer-specific markers showed distinct expression patterns. TBR1-positive, SATB2-positive, and FOXP1-positive cells were diffusely distributed in the cortex and/or the white matter. TBR1-positive and FOXP1-positive cells were generally more numerous in FCD IIB than in FCD IIA and were mostly in the cortical molecular and upper layers. FOXP1-, FOXP2-, and CUTL1-positive cells also expressed the immature neuron marker, Nestin/PROX1, whereas TBR1-, CTIP2-, and SATB2-positive cells only expressed MAP2/2B. These data highlight differences between FCD IIB and FCD IIA with more cells having the immature marker in upper layer markers in the former. By analyzing layer-specific marker expression patterns, we identified apparent neuronal maturation differences between FCD IIA and FCD IIB in cases of transmantle dysplasia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.