This paper presents a unique tribological system that is able to produce no measurable wear of material combination and that reduces friction markedly in the ultralow regime under boundary lubrication. Ultralow friction (0.03) was obtained by sliding hydrogen-free Diamond-Like-Carbon ta-C against ta-C lubricated with Poly-alpha Olefin base oil containing Glycerol Mono-Oleate (GMO) additive. The origin of ultralow friction in these conditions has been investigated by surface analysis techniques. Results are in agreement with the formation of a OH-terminated carbon surface. This new surface chemistry might be formed by the tribochemical reaction of alcohol function groups with the friction-activated ta-C atoms. The origin of low friction could be due to the very low-energy interaction between OH-terminated surfaces.
The antiwear performance of simulated used-engine-oil that contained a chemical contaminant (degraded zinc dialkyldithiophosphate (ZnDTP)) was studied with and without physical contamination (carbon black) using a four-ball tribometer. By reacting with cumene hydroperoxide, sec-C6-ZnDTP was degraded and produced many compounds containing both phosphorous and sulphur. The simulated used-oils were found to promote wear. This wear was considered to be due to corrosive wear by the excess reaction of surfaces with the sulphur contained in the degraded compounds. Carbon black was used to model carbon soot, which is another key substance of degraded engine oils, especially in diesel engines, to study the synergism between chemical contamination (ZnDTP degradation) and physical contamination (carbon soot contamination). Carbon black increased wear irrespective of the level of ZnDTP degradation, and the acceleration was much greater in the degraded oils. The wear acceleration by carbon black was observed even when the antiwear film from ZnDTP was already present on the surface. It was suggested that the wear acceleration by carbon black was due to abrasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.