Although the α-oxygenation of amines is a highly attractive method for the synthesis of amides, efficient catalysts suited to a wide range of secondary and tertiary alkyl amines using O2 as the terminal oxidant have no precedent. This report describes a novel, green α-oxygenation of a wide range of linear and cyclic secondary and tertiary amines mediated by gold nanoparticles supported on alumina (Au/Al2 O3 ). The observed catalysis was truly heterogeneous, and the catalyst could be reused. The present α-oxygenation utilizes O2 as the terminal oxidant and water as the oxygen atom source of amides. The method generates water as the only theoretical by-product, which highlights the environmentally benign nature of the present reaction. Additionally, the present α-oxygenation provides a convenient method for the synthesis of (18) O-labeled amides using H2 (18) O as the oxygen source.
Flavones are a class of natural products with diverse biological activities and have frequently been synthesized by step-by-step procedures using stoichiometric amounts of reagents. Herein, a catalytic one-pot procedure for the synthesis of flavone and its derivatives is developed. In the presence of gold nanoparticles supported on a Mg-Al layered double hydroxide (Au/LDH), various kinds of flavones can be synthesized starting from 2'-hydroxyacetophenones and benzaldehydes (or benzyl alcohols). The present one-pot procedure consists of a sequence of several reactions, and Au/LDH can catalyze all these different types of reactions. The catalysis is shown to be truly heterogeneous, and Au/LDH can be readily recovered and reused.
Although supported anionic gold nanoparticle catalysts have been theoretically investigated for their efficacy in activating O 2 in aerobic oxidation reactions, limited studies have been reported due to the difficulty of designing these catalysts. Herein, we developed a feasible method for preparing supported anionic gold nanoparticle catalysts using multivacant lacunary polyoxometalates with high negative charges. We confirmed the strong and robust electronic interaction between gold nanoparticles and multivacant lacunary polyoxometalates, and the electronic states of the supported gold nanoparticle catalysts can be sequentially modulated. Particularly, the catalyst prepared using [SiW 9 O 34 ] 10À acted as an efficient reusable heterogeneous catalyst, showing superior catalytic performance for the oxidative dehydrogenation of piperidone derivatives to the corresponding enaminones and remarkably higher stability than supported gold nanoparticle catalysts without this modification.
Dehydrogenative aromatization is one of the attractive alternative methods for directly synthesizing primary anilines from NH3 and cyclohexanones. However, the selective synthesis of primary anilines is quite difficult because the desired primary aniline products and the cyclohexanone substrates readily undergo condensation affording the corresponding imines (i.e., N‐cyclohexylidene‐anilines), followed by hydrogenation to produce N‐cyclohexylanilines as the major products. In this study, primary anilines were selectively synthesized in the presence of supported Pd nanoparticle catalysts (e.g., Pd/HAP, HAP=hydroxyapatite, Ca10(PO4)6(OH)2) by utilizing competitive adsorption unique to heterogeneous catalysis; in other words, when styrene was used as a hydrogen acceptor, which preferentially adsorbs on the Pd nanoparticle surface in the presence of N‐cyclohexylidene‐anilines, various structurally diverse primary anilines were selectively synthesized from readily accessible NH3 and cyclohexanones. The Pd/HAP catalyst was reused several times though its catalytic performance gradually declined.
Direct
selective desaturation of carbonyl compounds to synthesize
α,β-unsaturated carbonyl compounds represents an environmentally
benign alternative to classical stepwise procedures. In this study,
we designed an ideal CeO2-supported Pd(II)-on-Au nanoparticle
catalyst (Pd/Au/CeO2) and successfully achieved heterogeneously
catalyzed selective desaturation of cyclohexanones to cyclohexenones
using O2 in air as the oxidant. Besides cyclohexenones,
various bioactive enones can also be synthesized from the corresponding
saturated ketones under open air conditions in the presence of Pd/Au/CeO2. Preliminary mechanistic studies revealed that α-C–H
bond cleavage in the substrates is the turnover-limiting step of this
desaturation reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.