The mixing effectiveness, i.e., the enhancement of molecular diffusion, of a flow can be quantified in terms of the suppression of concentration variance of a passive scalar sustained by steady sources and sinks. The mixing enhancement defined this way is the ratio of the RMS fluctuations of the scalar mixed by molecular diffusion alone to the (statistically steady-state) RMS fluctuations of the scalar density in the presence of stirring. This measure of the effectiveness of the stirring is naturally related to the enhancement factor of the equivalent eddy diffusivity over molecular diffusion, and depends on the Péclet number. It was recently noted that the maximum possible mixing enhancement at a given Péclet number depends as well on the structure of the sources and sinks. That is, the mixing efficiency, the effective diffusivity, or the eddy diffusion of a flow generally depends on the sources and sinks of whatever is being stirred. Here we present the results of particle-based simulations quantitatively confirming the source-sink dependence of the mixing enhancement as a function of Péclet number for a model flow.
We introduce a new matter action principle, with a wide range of applicability, for the Vlasov equation in terms of a conjugate pair of functions. Here we apply this action principle to the study of matter in Bianchi cosmological models in general relativity. The Bianchi models are spatially-homogeneous solutions to the Einstein field equations, classified by the three-dimensional Lie algebra that describes the symmetry group of the model. The Einstein equations for these models reduce to a set of coupled ordinary differential equations. The class A Bianchi models admit a Hamiltonian formulation in which the components of the metric tensor and their time derivatives yield the canonical coordinates. The evolution of anisotropy in the vacuum Bianchi models is determined by a potential due to the curvature of the model, according to its symmetry.For illustrative purposes, we examine the evolution of anisotropy in models with Vlasov matter.The Vlasov content is further simplified by the assumption of cold, counter-streaming matter, a kind of matter that is far from thermal equilibrium and is not describable by an ordinary fluid model nor other more simplistic matter models. Qualitative differences and similarities are found in the dynamics of certain vacuum class A Bianchi models and Bianchi Type I models with cold, counter-streaming Vlasov matter potentials analogous to the curvature potentials of corresponding vacuum models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.