We investigated carrier formation dynamics in a small-molecular bulk heterojunction solar cell, 2,5-di-(2-ethylhexyl)-3,6-bis-(5″-n-hexy-[2,2′,5′,2″]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrolo-1,4-dione/[6,6]-phenyl C71-butyric acid methyl ester, with low bandgap (Egap≈1.5 eV). The photoinduced absorption (PIA) spectra of the blend film were decomposed into three PIAs, i.e., those due to donor exciton (D*), acceptor exciton (A*), and mobile carrier (D+). The analysis revealed carrier conversion from D* with a conversion time of ∼1.3 ps.
Layered oxide NaxMO2 (M: transition metal) is a promising cathode material for sodium-ion secondary battery. Crystal structure of O3- and P2-type NaxMO2 with various M against temperature (T) was systematically investigated by synchrotron x-ray diffraction mainly focusing on the T-dependences of a- and c-axis lattice constants (a and c) and z coordinate (z) of oxygen. Using a hard-sphere model with minimum Madelung energy, we confirmed that c/a and z values in O3-type NaxMO2 were reproduced. We further evaluated the thermal expansion coefficients (αa and αc) along a- and c-axis at 300 K. The anisotropy of the thermal expansion was quantitatively reproduced without adjustable parameters for O3-type NaxMO2. Deviations of z from the model for P2-type NaxMO2 are ascribed to Na vacancies characteristic to the structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.