Catalytic converters are widely used to reduce the amounts of nitrogen oxides, carbon monoxide and unburned hydrocarbons in automotive emissions. The catalysts are finely divided precious-metal particles dispersed on a solid support. During vehicle use, the converter is exposed to heat, which causes the metal particles to agglomerate and grow, and their overall surface area to decrease. As a result, catalyst activity deteriorates. The problem has been exacerbated in recent years by the trend to install catalytic converters closer to the engine, which ensures immediate activation of the catalyst on engine start-up, but also places demanding requirements on the catalyst's heat resistance. Conventional catalyst systems thus incorporate a sufficient excess of precious metal to guarantee continuous catalytic activity for vehicle use over 50,000 miles (80,000 km). Here we use X-ray diffraction and absorption to show that LaFe(0.57)Co(0.38)Pd(0.05)O(3), one of the perovskite-based catalysts investigated for catalytic converter applications since the early 1970s, retains its high metal dispersion owing to structural responses to the fluctuations in exhaust-gas composition that occur in state-of-the-art petrol engines. We find that as the catalyst is cycled between oxidative and reductive atmospheres typically encountered in exhaust gas, palladium (Pd) reversibly moves into and out of the perovskite lattice. This movement appears to suppress the growth of metallic Pd particles, and hence explains the retention of high catalyst activity during long-term use and ageing.
X-ray anomalous diffraction, together with a band-structure calculation, was employed to obtain a quantitative understanding of the charge-ordering state in a single-crystalline CaFeO3 thin film. The experimental result shows a characteristic energy dispersion of the nearly inhibited reflection at 150 K, implying Fe atoms split into two distinct states. The energy dispersion is in good agreement with the calculated spectrum based on the LDA+U scheme. The calculation also reveals an electronic structure of the system where holes in the oxygen orbital surround one of the distinct Fe atoms, in spite of the total electron number in both Fe atoms remaining unchanged.
The orbitally ordered phase of DyB2C2 has been studied by nonresonant x-ray diffraction with high-brilliance synchrotron radiation. From the condition of diffraction, the symmetry property of the charge distribution around dysprosium has been concluded at the quadrupolar level. The quantitative inspection, furthermore, indicates that the observed signals cannot be interpreted as arising only from the 4f electrons of dysprosium responsible for the ordering; instead, the experiment can be described rather well by considering a distortion of the metaloid network concomitant with the ordering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.