Childhood glaucoma is one of the major causes of blindness in children, however, its diagnosis is of great challenge. The study aimed to demonstrate and evaluate the performance of a deep-learning (DL) model for detecting childhood glaucoma based on periocular photographs. Primary gaze photographs of children diagnosed with glaucoma with appearance features (corneal opacity, corneal enlargement, and/or globe enlargement) were retrospectively collected from the database of a single referral center. DL framework with the RepVGG architecture was used to automatically recognize childhood glaucoma from photographs. The average receiver operating characteristic curve (AUC) of fivefold cross-validation was 0.91. When the fivefold result was assembled, the DL model achieved an AUC of 0.95 with a sensitivity of 0.85 and specificity of 0.94. The DL model showed comparable accuracy to the pediatric ophthalmologists and glaucoma specialists in diagnosing childhood glaucoma (0.90 vs 0.81, p = 0.22, chi-square test), outperforming the average of human examiners in the detection rate of childhood glaucoma in cases without corneal opacity (72% vs. 34%, p = 0.038, chi-square test), with a bilateral corneal enlargement (100% vs. 67%, p = 0.03), and without skin lesions (87% vs. 64%, p = 0.02). Hence, this DL model is a promising tool for diagnosing missed childhood glaucoma cases.
Background Iris mammillation is a rare disease characterized by the distribution of multiple nodules on the iris surface. The course of uveitic glaucoma with iris mammillation has never been reported. Case presentation A 56-year-old woman, who presented with unilateral decreased vision, visited our hospital for treatment of uveitic glaucoma in the right eye. Multiple nodules were scattered over the iris surface in that eye. This case was diagnosed as iris mammillation on clinical findings. After excluding malignant tumors such as melanoma, trabeculectomy was performed. The resected iris had no pathologically malignant findings. The iris nodules evolved to a sand-like appearance, and the intraocular pressure remained stable without recurrent inflammation 7 years after trabeculectomy. Conclusions In a case of unilateral uveitic glaucoma with iris mammillation, filtration surgery was performed after excluding the presence of a malignancy, and the long-term postoperative course has been stable.
Childhood glaucoma is one of the major causes of blindness in children, however, its diagnosis is of great challenge. The study aimed to demonstrate and evaluate the performance of a deep-learning (DL) model for detecting childhood glaucoma based on periocular photographs. Primary gaze photographs of children diagnosed with glaucoma with appearance features (corneal opacity, corneal enlargement, and/or globe enlargement) were retrospectively collected from the database of a single referral center. DL framework with the RepVGG architecture was used to automatically recognize childhood glaucoma from photographs. The average receiver operating characteristic curve (AUC) of 5-fold cross-validation was 0.91. When the 5-fold result was assembled, the DL model achieved an AUC of 0.95 with a sensitivity of 0.85 and specificity of 0.94. The DL model showed comparable accuracy to the pediatric ophthalmologists and glaucoma specialists in diagnosing childhood glaucoma (0.90 vs 0.81, p = 0.22, chi-square test), outperforming the average of human examiners in the detection rate of childhood glaucoma in cases without corneal opacity (72% vs. 34%, p = 0.038, chi-square test), with a bilateral corneal enlargement (100% vs. 67%, p = 0.03), and without skin lesions (87% vs. 64%, p = 0.02). Hence, this DL model is a promising tool for diagnosing missed childhood glaucoma cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.