Cattle are major reservoirs of the provisionally named influenza D virus, which is potentially involved in the bovine respiratory disease complex. Here, we conducted a serological survey for the influenza D virus in Japan, using archived bovine serum samples collected during 2010–2016 from several herds of apparently healthy cattle in various regions of the country. We found sero-positive cattle across all years and in all the prefectural regions tested, with a total positivity rate of 30.5%, although the positivity rates varied among regions (13.5–50.0%). There was no significant difference in positivity rates for Holstein and Japanese Black cattle. Positivity rates tended to increase with cattle age. The herds were clearly divided into two groups: those with a high positive rate and those with a low (or no) positive rate, indicating that horizontal transmission of the virus occurs readily within a herd. These data demonstrate that bovine influenza D viruses have been in circulation for at least 5 years countrywide, emphasizing its ubiquitous distribution in the cattle population of Japan.
Highly pathogenic avian influenza viruses (HPAIVs) A(H5N6) were concurrently introduced into several distant regions of Japan in November 2016. These viruses were classified into the genetic clade 2.3.4.4c and were genetically closely related to H5N6 HPAIVs recently isolated in South Korea and China. In addition, these HPAIVs showed further antigenic drift.
Influenza viruses recognize sialoglycans as receptors. Although viruses isolated form chickens preferentially bind to sialic acid α2,3 galactose (SAα2,3Gal) glycans as do those of ducks, chickens were not experimentally infected with viruses isolated from ducks. A chicken influenza virus, A/chicken/Ibaraki/1/2005 (H5N2) (Ck/IBR) bound to fucose-branched SAα2,3Gal glycans, whereas the binding towards linear SAα2,3Gal glycans was weak. On the epithelial cells of the upper respiratory tracts of chickens, fucose-branched SAα2,3Gal glycans were detected, but not linear SAα2,3Gal glycans. The growth of Ck/IBR in MDCK-FUT cells, which were genetically prepared to express fucose-branched SAα2,3Gal glycans, was significantly higher than that in the parental MDCK cells. The present results indicate that fucose-branched SAα2,3Gal glycans existing on the epithelial cells lining the upper respiratory tracts of chickens are critical for recognition by Ck/IBR.
Influenza viruses isolated from ducks are rarely able to infect chickens; it is therefore postulated that these viruses need to adapt in some way to be able to transmit to chickens in nature. Previous studies revealed that sialyl Lewis X (3′SLeX), which is fucosylated α2,3 sialoside was predominantly detected on the epithelial cells of the chicken trachea, whereas this glycan structure is not found in the duck intestinal tract. To clarify the mechanisms of the interspecies transmission of influenza viruses between ducks and chickens, we compared the receptor specificity of low pathogenic avian influenza viruses isolated from these two species. Glycan-binding analysis of the recombinant hemagglutinin (HA) of a chicken influenza virus, A/chicken/Ibaraki/1/2005 (H5N2), revealed a binding preference to α1,3 fucosylated sialosides. On the other hand, the HA of a duck influenza virus, A/duck/Mongolia/54/2001 (H5N2) (Dk/MNG), particularly bound to non-fucosylated α2,3 sialosides such as 3-sialyllactosamine (3′SLacNAc). Computational analyses along with binding analyses of the mutant HAs revealed that this glycan-binding specificity of the HA was determined by amino acid residues at positions 222 and 227. Inconsistent with the glycan-binding specificity of the recombinant HA protein, virions of Dk/MNG bound to both 3′SLacNAc and 3′SLeX. Glycan-binding analysis in the presence of a neuraminidase (NA) inhibitor revealed that the NA conferred binding to 3′SLeX to virions of Dk/MNG. The present results reveal the molecular basis of the interaction between fucosylated α2,3 sialosides and influenza viruses.
24A total of 3,045 environmental samples and oropharyngeal and cloacal swabs from apparently 25 healthy poultry have been collected at three live bird markets (LBMs) at which practices were 26 applied to reduce avian influenza (AI) virus transmission (intervention LBMs) and six conventional
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.