TMEM16 (transmembrane protein 16) proteins, which possess eight putative transmembrane domains with intracellular NH2- and COOH-terminal tails, are thought to comprise a Cl− channel family. The function of TMEM16F, a member of the TMEM16 family, has been greatly controversial. In the present study, we performed whole cell patch-clamp recordings to investigate the function of human TMEM16F. In TMEM16F-transfected HEK293T cells but not TMEM16K- and mock-transfected cells, activation of membrane currents with strong outward rectification was found to be induced by application of a Ca2+ ionophore, ionomycin, or by an increase in the intracellular free Ca2+ concentration. The free Ca2+ concentration for half-maximal activation of TMEM16F currents was 9.6 μM, which is distinctly higher than that for TMEM16A/B currents. The outwardly rectifying current-voltage relationship for TMEM16F currents was not changed by an increase in the intracellular Ca2+ level, in contrast to TMEM16A/B currents. The Ca2+-activated TMEM16F currents were anion selective, because replacing Cl− with aspartate− in the bathing solution without changing cation concentrations caused a positive shift of the reversal potential. The anion selectivity sequence of the TMEM16F channel was I− > Br− > Cl− > F− > aspartate−. Niflumic acid, a Ca2+-activated Cl− channel blocker, inhibited the TMEM16F-dependent Cl− currents. Neither overexpression nor knockdown of TMEM16F affected volume-sensitive outwardly rectifying Cl− channel (VSOR) currents activated by osmotic swelling or apoptotic stimulation. These results demonstrate that human TMEM16F is an essential component of a Ca2+-activated Cl− channel with a Ca2+ sensitivity that is distinct from that of TMEM16A/B and that it is not related to VSOR activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.