Interleukin-6 (IL-6) plays pathologic roles in immune-inflammatory diseases such as rheumatoid arthritis (RA) and Castleman disease. By inhibiting IL-6 receptors (IL-6Rs), tocilizumab (a humanized anti-IL-6R antibody) ameliorates the symptoms of these diseases and normalizes acute-phase proteins, including Creactive protein (CRP). We found that tocilizumab treatment increased serum levels of IL-6 and soluble IL-6R (sIL-6R). To investigate the pathologic significance of these increases, we analyzed the kinetics of serum IL-6 and sIL-6R and the proportion of sIL-6R saturated with tocilizumab after tocilizumab administration in patients with RA and Castleman disease and then compared the results with the CRP values. Serum IL-6 and sIL-6R markedly increased after tocilizumab administration in both RA and Castleman disease. As long as free tocilizumab was detectable, sIL-6R was saturated with tocilizumab and IL-6 signaling was completely inhibited. We concluded that it is likely that sIL-6R increased because its elimination half-life was prolonged by the formation of tocilizumab/sIL-6R immune complex, and that free serum IL-6 increased because IL-6R-mediated consumption of IL-6 was inhibited by the unavailability of tocilizumab-free IL-6R. We also concluded that the increased level of free IL-6 during tocilizumab treatment closely reflects the actual endogenous IL-6 production and true disease activity. (Blood. 2008;112:3959-3964)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.