A common deletion at chromosomal arm 14q32 in human renal cell carcinoma (RCC) prompted us to explore a tumor suppressor gene (TSG) in this region. We report that imprinted DLK1 at 14q32, a regulator of adipocyte differentiation, is a candidate TSG in RCCs. DLK1 expression was lost in 39 out of 50 (78%) primary RCC tissues, whereas expression of DLK1 was maintained in every normal kidney tissue examined. DLK1 was expressed in only one of 15 (7%) RCC-derived cell lines. In order to see the biological significance of DLK1 inactivation in RCCs, we tested the effect of restoration of DLK1 in RCC cell lines, using a recombinant retrovirus containing the gene. Reintroduction of DLK1 into DLK1-null RCC cell lines markedly increased anchorage-independent cell death, anoikis and suppressed tumor growth in nude mice. We then investigated the underlying mechanisms for DLK1 inactivation in RCCs. We found loss of heterozygosity at this region in 12 out of 50 RCC tissues (24%). To explore the role of epigenetic regulation of DLK1 inactivation in RCCs, we conducted methylation analysis of the upstream region and the gene body of DLK1. We could not find a differentially methylated region in either the upstream region or the gene body of DLK1. However, we found that gain of methylation upstream of GTL2, a reciprocal imprinted gene for DLK1, is a critical epigenetic alteration for the inactivation of DLK1 in RCCs. The present data have shown that gain of methylation upstream of the untranslated GTL2 leads to pathological downregulation of DLK1 in RCCs.
The increased risk of several types of cancer in Klinefelter syndrome (47XXY) suggests that the extra X chromosome may be involved in the tumorigenesis associated with this syndrome. Here, we show that cancer cells (PSK-1) derived from a patient with Klinefelter syndrome (47XXY) showing loss of an inactive X chromosome subsequently gained active X chromosomes. We found that this abnormal X chromosome composition in PSK-1 is caused by a loss of an inactive X chromosome followed by multiplication of identical active X chromosomes, not by reactivation of an inactive X chromosome. Furthermore, we extended the characterization of loss-of-inactive X in a series of 22 female-derived cancer cell lines (eight breast cancer cell lines, seven ovarian cancer cell lines, and seven cervical cancer cell lines). The data demonstrate that lossof-inactive X in the female-derived cancer cells is mainly achieved by loss of an inactive X chromosomes followed by multiplication of an identical active X chromosomes. However, distinctive pathways, including reactivation of an inactive X chromosome, are also involved in the mechanisms for loss-of-inactive X and gain-of-active X in female-derived cancer cells. The biological significance of the loss-of-inactive X and gain-of-active X in the oncogenesis of Klinefelter syndrome and female-derived cancer cells are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.