Recently, it has been found that the gut microbiota influences functions of the host brain by affecting monoamine metabolism. The present study focused on the relationship between the gut microbiota and the brain amino acids. Specific pathogen-free (SPF) and germ-free (GF) mice were used as experimental models. Plasma and brain regions were sampled from mice at 7 and 16 weeks of age, and analysed for free d- and l-amino acids, which are believed to affect many physiological functions. At 7 weeks of age, plasma concentrations of d-aspartic acid (d-Asp), l-alanine (l-Ala), l-glutamine (l-Gln) and taurine were higher in SPF mice than in GF mice, but no differences were found at 16 weeks of age. Similar patterns were observed for the concentrations of l-Asp in striatum, cerebral cortex and hippocampus, and l-arginine (l-Arg), l-Ala and l-valine (l-Val) in striatum. In addition, the concentrations of l-Asp, d-Ala, l-histidine, l-isoleucine (l-Ile), l-leucine (l-Leu), l-phenylalanine and l-Val were significantly higher in plasma of SPF mice when compared with those of GF mice. The concentrations of l-Arg, l-Gln, l-Ile and l-Leu were significantly higher in SPF than in GF mice, but those of d-Asp, d-serine and l-serine were higher in some brain regions of GF mice than in those of SPF mice. In conclusion, the concentration of amino acids in the host brain seems to be dependent on presence of the gut microbiota. Amino acid metabolism in the host brain may be modified by manipulating microbiota communities.
Interferon-induced transmembrane protein 3 (IFITM3) ıplays a crucial role in the antiviral responses of Type I interferons (IFNs). The role of IFITM3 in the central nervous system (CNS) is, however, largely unknown, despite the fact that its expression is increased in the brains of patients with neurologic and neuropsychiatric diseases. Here, we show the role of IFITM3 in long-lasting neuronal impairments in mice following polyriboinosinic-polyribocytidylic acid (polyI:C, a synthetic double-stranded RNA)-induced immune challenge during the early stages of development. We found that the induction of IFITM3 expression in the brain of mice treated with polyI:C was observed only in astrocytes. Cultured astrocytes were activated by polyI:C treatment, leading to an increase in the mRNA levels of inflammatory cytokines as well as Ifitm3. When cultured neurons were treated with the conditioned medium of polyI:C-treated astrocytes (polyI:C-ACM), neurite development was impaired. These polyI:C-ACM-induced neurodevelopmental abnormalities were alleviated by ifitm3(-/-) astrocyte-conditioned medium. Furthermore, decreases of MAP2 expression, spine density, and dendrite complexity in the frontal cortex as well as memory impairment were evident in polyI:C-treated wild-type mice, but such neuronal impairments were not observed in ifitm3(-) (/) (-) mice. We also found that IFITM3 proteins were localized to the early endosomes of astrocytes following polyI:C treatment and reduced endocytic activity. These findings suggest that the induction of IFITM3 expression in astrocytes by the activation of the innate immune system during the early stages of development has non-cell autonomous effects that affect subsequent neurodevelopment, leading to neuropathological impairments and brain dysfunction, by impairing endocytosis in astrocytes.
Intensive, prolonged exercise is known to induce gastrointestinal disorders such as diarrhea, with gut dysbiosis suggested as being one of the causatives. In the present study, we wanted to investigate the relationship between intensive exercise and the gut microbiota status. To that end, the microbiota, the moisture content and the bacterial metabolites (e.g., organic acids) of female endurance runners (n = 15) and those of non athletic but healthy, age matching female controls (n = 14) were compared. The analysis of the gut microbiota analysis showed that, unlike control subjects, female endurance runners had distinct micro biotas, with some bacteria found in higher abundances likely being involved in gut inflammation. The concentration of succi nate, a gut bacterial metabolite regarded as undesirable when accumulated in the lumen, was significantly (p<0.05) higher in the female endurance runners. Faecalibacterium, that was signifi cantly (p<0.05) abundant in female endurance runners, can pro duce succinate in certain environments and hence may contribute to succinate accumulation, at least partly. The present work suggested that the gut microbiotas of female endurance runners are seemingly dysbiotic when compared with those of control subjects. Further investigation of the mechanism by which inten sive, prolonged exercise affects the gut microbiota is recommended.
The gut microbiota is involved in the pathogenesis of stress-related disorders. Probiotics can benefit the central nervous system via the microbiota–gut–brain axis, which raises the possibility that probiotics are effective in managing depression. In the present study, we examined the effects of heat-killed Lactobacillus helveticus strain MCC1848 in subchronic and mild social defeat stress (sCSDS) model mice (a widely used animal model of depression). MCC1848 supplementation significantly enhanced the interaction time in the social interaction test and sucrose preference ratio in the sucrose preference test, suggesting that MCC1848 improved anxiety- or depressive-like behaviors in sCSDS mice. The gene expression profile analysis of the nucleus accumbens, which plays an important role in stress resilience, indicated that MCC1848 ameliorated sCSDS-induced gene expression alterations in signal transduction or nervous system development. These findings suggest that MCC1848 supplementation is useful as a preventive strategy for chronic-stress-induced depression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.