We investigate the intracluster light (ICL) in the six Hubble Frontier Field clusters at 0.3 < z < 0.6 . We employ a new method, which is free from any functional form of the ICL profile, and exploit the unprecedented depth of this Hubble Space Telescope imaging to map the ICL’s diffuse light out to clustrocentric radii R ∼ 300 kpc ( μ ICL ∼ 27 mag arcsec−2). From these maps, we construct radial color and stellar mass profiles via SED fitting and find clear negative color gradients in all systems with increasing distance from the Brightest Cluster Galaxy (BCG). While this implies older/more metal-rich stellar components in the inner part of the ICL, we find that the ICL mostly consists of a ≲ 2 Gyr population, and plausibly originated with log M * / M ⊙ ≲ 10 cluster galaxies. Furthermore, we find that 10%–15% of the ICL’s mass at large radii ( ≳ 150 kpc) lies in a younger/bluer stellar population (∼1 Gyr), a phenomenon not seen in local samples. We attribute this light to the higher fraction of star-forming/(post-)starburst galaxies in clusters at z ∼ 0.5 . Ultimately, we find the ICL’s total mass to be log M * ICL / M ⊙ ∼ 11 –12, constituting 5%–20% of the clusters’ total stellar mass, or about half of the value at z ∼ 0 . The above implies distinct formation histories for the ICL and BCGs/other massive cluster galaxies; i.e., the ICL at this epoch is still being constructed rapidly ( ∼ 40 M ⊙ yr−1), while the BCGs have mostly completed their evolution. To be consistent with the ICL measurements of local massive clusters, such as Virgo, our data suggest mass acquisition mainly from quiescent cluster galaxies is the principal source of ICL material in the subsequent ∼5 Gyr of cosmic time.
A galaxy cluster acts as a cosmic telescope over background galaxies but also as a cosmic microscope magnifying the imperfections of the lens. The diverging magnification of lensing caustics enhances the microlensing effect of substructure present within the lensing mass. Fine-scale structure can be accessed as a moving background source brightens and disappears when crossing these caustics. The recent discovery of a distant lensed star near the Einstein radius of the galaxy cluster MACSJ1149.5+2223 allows the rare opportunity to reach subsolar-mass microlensing through a supercritical column of cluster matter. Here we compare these observations with high-resolution raytracing simulations that include stellar microlensing set by the observed intracluster starlight and also primordial black holes that may be responsible for the recently observed LIGO events. We explore different scenarios with microlenses from the intracluster medium and black holes, including primordial ones, and examine strategies to exploit these unique alignments. We find that the best constraints on the fraction of compact dark matter in the small-mass regime can be obtained in regions of the cluster where the intracluster medium plays a negligible role. This new lensing phenomenon should be widespread and can be detected within modest-redshift lensed galaxies so that the luminosity distance is not prohibitive for detecting individual magnified stars. High-cadence Hubble Space Telescope monitoring of several such optimal arcs will be rewarded by an unprecedented mass spectrum of compact objects that can contribute to uncovering the nature of dark matter.
We present a full data analysis of the pure-parallel Hubble Space Telescope (HST) imaging observations in the Brightest of Reionizing Galaxies Survey (BoRG[z9]) in Cycle 22. The medium-deep exposures with five HST/WFC3IR+UVIS filter bands from 79 independent sightlines (∼ 370 arcmin 2 ) provide the least biased determination of number density for z ∼ > 9 bright galaxies against cosmic variance. After a strict twostep selection for candidate galaxies, including dropout color and photometric redshift analyses, and revision of previous BoRG candidates, we identify one source at z ∼ 10 and two sources at z ∼ 9. The z ∼ 10 candidate shows evidence of line-of-sight lens magnification (µ ∼ 1.5), yet it appears surprisingly luminous (M UV ∼ −22.6 ± 0.3 mag), making it one of the brightest candidates at z > 8 known (∼ 0.3 mag brighter than the z = 8.68 galaxy EGSY8p7, spectroscopically confirmed by Zitrin and collaborators). For z ∼ 9 candidates, we include previous data points at fainter magnitudes and find that the data are well fitted by a Schechter luminosity function with α = −2.1 +0.3 −0.3 , M * UV = −21.0 +0.7 −1.4 mag, and log φ * = −4.2 +0.6 −0.9 Mpc −3 mag −1 , for the first time without fixing any parameters. The inferred cosmic star formation rate density is consistent with unaccelerated evolution from lower redshift.
The GLASS-JWST Early Release Science (hereafter GLASS-JWST-ERS) Program will obtain and make publicly available the deepest extragalactic data of the ERS campaign. It is primarily designed to address two key science questions, namely, “what sources ionized the universe and when?” and “how do baryons cycle through galaxies?”, while also enabling a broad variety of first look scientific investigations. In primary mode, it will obtain NIRISS and NIRSpec spectroscopy of galaxies lensed by the foreground Hubble Frontier Field cluster, Abell 2744. In parallel, it will use NIRCam to observe two fields that are offset from the cluster center, where lensing magnification is negligible, and which can thus be effectively considered blank fields. In order to prepare the community for access to this unprecedented data, we describe the scientific rationale, the survey design (including target selection and observational setups), and present pre-commissioning estimates of the expected sensitivity. In addition, we describe the planned public releases of high-level data products, for use by the wider astronomical community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.