Using x-ray photoemission spectroscopy (XPS) and current-voltage (I-V) measurements of Hg contacts we show that the surface electron accumulation layer of In2O3 can be removed by an oxygen plasma treatment. For the untreated sample, XPS measured a downward band bending toward the surface and a conduction band peak, and the I-V curve was linear which indicated the presence of a surface accumulation layer. After the treatment an upward bending, the absence of the conduction band peak, and a nonlinear I-V curve indicated the absence of the surface accumulation layer. The sheet resistance of the surface accumulation layer of >45 kΩ was deduced from the increase of the total sheet resistance upon the treatment. The removal of the surface electron accumulation layer opens up the possibility to use Schottky contacts for electrical characterization and device applications of semiconducting In2O3.
In a newly proposed switching device using polycrystalline HfO2 thin film with ion diffusion path, we have found that a Cu electrode could contribute to improved switching performance. Current–voltage measurements at room temperature revealed clear resistive switching, not accompanied by a forming process, in our Cu/HfO2/Pt structure. The current step difference from one state to the other one was in the order of 103–104, giving a sufficient on/off ratio. Voltage sweep polarity suggested that filamentary Cu paths were formed due to Cu ion diffusion and annihilated at the HfO2/Pt interface at reversed bias. This filament path formation and annihilation was the origin of the switching device performance.
1) A new adhesive opaque resin containing a reactive monomer, 4-methacryloxy-ethyl trimellitate anhydride (4-META), was prepared, and its application to thermosetting acrylic resin veneer crowns was studied. 2) The 4-META opaque resin was applied to a variety of nickel-chromium dental alloy specimens which had undergone different treatment, and endurance tests were conducted to evaluate the durability of adhesion. 3) Stable adhesion against water penetration was achieved with metal surfaces first etched with HCl and then oxidized with HNO3. A bond strength of 250 kg/cm2 was maintained even after immersion in water at 37 degrees C for 30 wk or at 80 degrees C for ten wk. Furthermore, this value did not decrease even after the specimens were subjected to 500 thermal cycles. 4) The 4-META opaque resin studied can eliminate the necessity for retention devices on metal castings. 5) The smooth 4-META opaque resin should have no adverse effects on gingivae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.