After disasters, remote control of construction machinery is often required to ensure the safety of workers during excavation. However, only limited numbers of remote-controlled construction machinery exist, and they are typically larger than conventional machinery. After a disaster, the transportation of such machinery takes additional time and is often troublesome. Therefore, it would be desirable to develop a remote-control system that could easily be installed on ordinary construction machinery. A pneumatic humanoid robot arm is in the process of being developed. While considering the portability issue, a lightweight fiber knitted pneumatic artificial rubber muscle (PARM) was selected as the actuator for the arm. This arm can be installed on all construction machinery models, can be controlled remotely, and has been designed for easy installation and portability. In this research, construction machinery was retrofitted with a pneumatic robot that enables it to be operated remotely. This robot has 6 degrees of freedom and utilizes the fiber knitted PARM. Experiments were conducted to measure the static characteristics of the new PARM and to measure their performance in the remote control of construction machinery. Experimental results showed that the developed system is able to achieve handling two levers of machinery, one that controls back and forward movement and the other that controls the bucket. Experimental results showed that the developed system successfully operated construction machinery remotely.
The X-Ray Imaging and Spectroscopy Mission (XRISM) is the successor to the 2016 Hitomi mission that ended prematurely. Like Hitomi, the primary science goals are to examine astrophysical problems with precise highresolution X-ray spectroscopy. XRISM promises to discover new horizons in X-ray astronomy. XRISM carries a 6 x 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly and a co-aligned X-ray CCD camera that covers the same energy band over a large field of view. XRISM utilizes Hitomi heritage, but all designs were reviewed. The attitude and orbit control system were improved in hardware and software. The number of star sensors were increased from two to three to improve coverage and robustness in onboard attitude determination and to obtain a wider field of view sun sensor. The fault detection, isolation, and reconfiguration (FDIR) system was carefully examined and reconfigured. Together with a planned increase of ground support stations, the survivability of the spacecraft is significantly improved.
I the restoration work from disasters, the remote control of construction machine is required to ensure the worker's safety. However, conventional remote-controlled construction machine is larger than ordinary ones and limited in types and numbers, so there is a problem that the transportation to the destructed sites takes time and is troublesome.We have been developing the pneumatic humanoid type robot arm, which can be installed in any models of construction machine. In consideration of portability, the lightweight fiber knitted type pneumatic artificial rubber muscle (PARM) was adopted as the actuator.In this paper, we developed the static and dynamic characteristic models of the PARM taking the effect of elasticity of rubber and frictional force into consideration. Then we realized the remote control of the construction machine using the pneumatic robot that has 6 degree of freedom using the PARM. Moreover, we did some experiments on the remote control of the construction machine. Experimental results show that the developed system is available in remote control of a construction machine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.