The cardiovascular effects of medetomidine, detomidine, and xylazine in horses were studied. Fifteen horses, whose right carotid arteries had previously been surgically raised to a subcutaneous position during general anesthesia were used. Five horses each were given the following 8 treatments: an intravenous injection of 4 doses of medetomidine (3, 5, 7.5, and 10 microg/kg), 3 doses of detomidine (10, 20, and 40 microg/kg), and one dose of xylazine (1 mg/kg). Heart rate decreased, but not statistically significant. Atrio-ventricular block was observed following all treatments and prolonged with detomidine. Cardiac index (CI) and stroke volume (SV) were decreased with all treatments. The CI decreased to about 50% of baseline values for 5 min after 7.5 and 10 microg/kg medetomidine and 1 mg/kg xylazine, for 20 min after 20 microg/kg detomidine, and for 50 min after 40 microg/kg detomidine. All treatments produced an initial hypertension within 2 min of drug administration followed by a significant decrease in arterial blood pressure (ABP) in horses administered 3 to 7.5 microg/kg medetomidine and 1 mg/kg xylazine. Hypertension was significantly prolonged in 20 and 40 microg/kg detomidine. The hypotensive phase was not observed in 10 microg/kg medetomidine or detomidine. The changes in ABP were associated with an increase in peripheral vascular resistance. Respiratory rate was decreased for 40 to 120 min in 5, 7.5, and 10 microg/kg medetomidine and detomidine. The partial pressure of arterial oxygen decreased significantly in 10 microg/kg medetomidine and detomidine, while the partial pressure of arterial carbon dioxide did not change significantly. Medetomidine induced dose-dependent cardiovascular depression similar to detomidine. The cardiovascular effects of medetomidine and xylazine were not as prolonged as that of detomidine.
ABSTRACT. Electroretinography (ERG) is an effective method for the diagnosis of retinal disease. In the dog, dependable ERG recording is difficult without the use of an expensive device like a Ganzfeld full-field stimulator. The International Society for Clinical Electrophysiology of Vision has defined the standard flash stimulus condition (SF) and evaluation of the retina using the b/a ratio in humans. In dogs, evaluation using the b/a ratio has not been reported, whereas the intensity of SF has been defined. In this study, we performed a convenient ERG recording method using a contact lens electrode with a built-in light source (LED-electrode), and confirmed SF as reported previously. ERG recordings were performed on 15 healthy beagle dogs under sedation. We performed bilateral ERG at 12 different intensities after 30 min dark adaptation. After 10 min light adaptation, we recorded single flash cone and flicker cone response using the SF determined in this study. In this study, SF of 3.0 cd/m 2 /sec (6,000 cd/m 2 , 0.5 msec) resulted in b/a=2. The intensity for rod response that recorded only the b-wave was 0.0096 cd/m 2 /sec (80 cd/m 2 , 0.12 msec). We could achieve ERG for each response easily and smoothly under sedation, and without general anesthesia. Using an LED-electrode, we could perform more quantitative and reproducible ERG examinations than with traditional methods. We propose that the b/a ratio is the most useful parameter in ERG reporting for evaluating retinal function. KEY WORDS: canine, contact lens electrode, electroretinography, rod response, standard flash.
Nipradilol is an alpha(1), beta-blocker with milder side effects than other beta-blockers used in humans. In this study the effects of nipradilol were compared with those of timolol maleate in dogs. Twelve clinically normal dogs (nine mongrels, two beagles, and one Akita) were used. We applied 0.25% nipradilol or 0.5% timolol maleate drops for a period of 28 days. Intraocular pressure (IOP) was measured before and after administration on the 2nd, 4th, 7th, 14th, 21st and 28th day. Blood pressure, pulse rate and coefficient of aqueous outflow (C-value) were also measured before and after administration on the 7th, 14th, 21st and 28th day. Both nipradilol and timolol maleate significantly lowered IOP from the 2nd day to the end of the study period. Nipradilol lowered IOP to an equivalent degree to timolol maleate. There was no significant change in blood pressure and pulse rate throughout the study period with administration of nipradilol. C-value showed a significant rise from the 14th day with administration of nipradilol, while it did not show any significant change during the study period with administration of timolol maleate. The reduction of IOP by nipradilol was similar to that by an existing beta-adrenergic antagonist, timolol maleate, but nipradilol was associated with fewer systemic side effects in dogs. Nipradilol appears to be a useful drug for treatment of glaucoma in dogs.
ABSTRACT. The anesthetic sparring and cardiovascular effects produced by midazolam 0.8 mg/ml-ketamine 40 mg/ml-medetomidine 0.05 mg/ml (0.025 ml/kg/hr) drug infusion during sevoflurane in oxygen (MKM-OS) anesthesia was determined in healthy horses. The anesthetic sparring effects of MKM-OS were assessed in 6 healthy thoroughbred horses in which the right carotid artery was surgically relocated to a subcutaneous position. All horses were intubated and ventilated with oxygen using intermittent positive pressure ventilation (IPPV). The end-tidal concentration of sevoflurane (ET SEV ) required to maintain surgical anesthesia was approximately 1.7%. Heart rate and mean arterial blood pressure averaged 23-41 beats/min and 70-112 mmHg, respectively. All horses stood between 23-44 min after the cessation of all anesthetic drugs. The cardiovascular effects of MKM-OS anesthesia were evaluated in 5 healthy thoroughbred horses ventilated using IPPV. Anesthesia was maintained for 4 hr at an ET SEV of 1.7%. Each horse was studied during left lateral (LR) and dorsal recumbency (DR) with a minimum interval between evaluations of 1 month. Cardiac output and cardiac index were maintained between 70-80% of baseline values during LR and 65-70% of baseline values during DR. Stroke volume was maintained between 75-85% of baseline values during LR and 60-70% of baseline values during DR. Systemic vascular resistance was not different from baseline values regardless of position. MKM-OS anesthesia may be useful for prolonged equine surgery because of its minimal cardiovascular depression in both of lateral and dorsal recumbency.
ABSTRACT. Axial correction was performed surgically in two miniature dachshunds presenting with lateral patellar dislocation and limping caused by pes varus. Pes varus had resulted from asymmetric closure of the physis of the distal tibia. Prior to surgery, osteotomy was simulated by measuring X-ray films to determine the distance required for the wedge opening. Transverse-opening wedge osteotomy was performed on the medial side of the distal tibia, and beta-tricalcium phosphate (β-TCP) was inserted in a wedge shape into the area created by the cuneiform osteotomy. Finally, the tibia was fixed by a veterinary 1.5/2.0-mm T-plate. Both dogs were able to walk a few days after surgery, and the lateral dislocation of the patella normalized almost completely in about one month. At two months, Xray films showed that the implant had remained in position without any dislocation, and the β-TCP had fused with the surrounding bone.KEY WORDS: opening wedge osteotomy, pes varus, T-plate fixation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.