[reaction: see text] Both a Co(III)-alkyl complex and a Co(III)-alkylperoxo complex were found to catalyze triethylsilylperoxidation of alkenes with O(2) and Et(3)SiH. On this basis, together with the nonstereoselectivity in the Co(II)-catalyzed peroxidation of 3-phenylindene and the formation of the corresponding 1,2-dioxolane from 2-phenyl-1-vinylcyclopropane (a radical clock), we propose a reasonable mechanism for the Co(II)-catalyzed novel autoxidation of alkenes with Et(3)SiH discovered by Isayama and Mukaiyama.
The kinetics of the reactions of amide and imide anions 2a-o with benzhydrylium ions 1a-i and structurally related quinone methides 1j-q have been studied by UV-vis spectroscopy in DMSO and acetonitrile solution. The second-order rate constants (log k(2)) correlated linearly with the electrophilicity parameters E of 1a-q according to the correlation log k(2) = s(N + E) (Angew. Chem., Int. Ed. Engl. 1994, 33, 938-957), allowing us to determine the nucleophilicity parameters N and the nucleophile-specific parameters s for these nucleophiles. The reactivities of all sulfonamide and diacylimide anions are found in a relatively small range (15 < N < 22). Comparison with structurally related carbanions revealed that amide and imide anions are less reactive than carbanions of the same pK(aH). These effects can be attributed to the absence of resonance stabilization of one of the lone pairs in the amide or imide anions. As amide and imide anions are exclusively attacked at nitrogen by benzhydrylium ions, Kornblum's interpretation of the ambident reactivity of amide anions has to be revised.
How fast do nucleophiles add to iminium ions? Kinetic studies of the reactions of seven iminium ions 1 with cyclic ketene acetals 2 rendered electrophilicity parameters E for these iminium ions. Because N and s parameters are known for numerous nucleophiles, the correlation log k(20 °C)=s(N+E) makes it possible to calculate rate constants for nucleophilic attack at the iminium ions 1.
In the competitive peroxidation of mixtures of two alkenes with Co(II)/O(2)/Et(3)SiH, it was found that the relative reactivities of the alkene substrates are influenced by three major factors:. (1) relative stability of the intermediate carbon-centered radical formed by the reaction of the alkene with HCo(III) complex, (2) steric effects around the C=C double bond, and (3) electronic factors associated with the C=C double bond. Consistent with results from simple alkenes, the chemo- and regioselective peroxidation of dienes was also realized. Depending on the diene structure, the product included not only the expected acyclic unsaturated triethylsilyl peroxides but also 1,2-dioxolane and 1,2-dioxane derivatives via intramolecular cyclization of the unsaturated peroxy radical intermediates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.