We have developed a new theoretical formalism for phonon transport in nanostructures using the nonequilibrium phonon Green's function technique and have applied it to thermal conduction in defective carbon nanotubes. The universal quantization of low-temperature thermal conductance in carbon nanotubes can be observed even in the presence of local structural defects such as vacancies and Stone-Wales defects, since the long wavelength acoustic phonons are not scattered by local defects. At room temperature, however, thermal conductance is critically affected by defect scattering since incident phonons are scattered by localized phonons around the defects. We find a remarkable change from quantum to classical features for the thermal transport through defective CNTs with increasing temperature.
We found a giant Seebeck effect in semiconducting single-wall carbon nanotube (SWCNT) films, which exhibited a performance comparable to that of commercial Bi 2 Te 3 alloys. Carrier doping of semiconducting SWCNT films further improved the thermoelectric performance. These results were reproduced well by first-principles transport simulations based on a simple SWCNT junction model. These findings suggest strategies that pave the way for emerging printed, allcarbon, flexible thermoelectric devices.
Strong spin–orbit coupling fosters exotic electronic states such as topological insulators and superconductors, but the combination of strong spin–orbit and strong electron–electron interactions is just beginning to be understood. Central to this emerging area are the 5d transition metal iridium oxides. Here, in the pyrochlore iridate Pr2Ir2O7, we identify a non-trivial state with a single-point Fermi node protected by cubic and time-reversal symmetries, using a combination of angle-resolved photoemission spectroscopy and first-principles calculations. Owing to its quadratic dispersion, the unique coincidence of four degenerate states at the Fermi energy, and strong Coulomb interactions, non-Fermi liquid behaviour is predicted, for which we observe some evidence. Our discovery implies that Pr2Ir2O7 is a parent state that can be manipulated to produce other strongly correlated topological phases, such as topological Mott insulator, Weyl semimetal, and quantum spin and anomalous Hall states.
We report across-bandgap p-type and n-type control over the Seebeck coefficients of semiconducting single-wall carbon nanotube networks through an electric double layer transistor setup using an ionic liquid as the electrolyte. All-around gating characteristics by electric double layer formation upon the surface of the nanotubes enabled the tuning of the Seebeck coefficient of the nanotube networks by the shift in gate voltage, which opened the path to Fermi-level-controlled three-dimensional thermoelectric devices composed of one-dimensional nanomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.