Fibroproliferative disorders such as idiopathic pulmonary fibrosis and systemic sclerosis have no effective therapies and result in significant morbidity and mortality due to progressive organ fibrosis. We examined the effect of peptides derived from endostatin on existing fibrosis and fibrosis triggered by two potent mediators, transforming growth factor–β (TGF-β) and bleomycin, in human and mouse tissues in vitro, ex vivo, and in vivo. We identified one peptide, E4, with potent antifibrotic activity. E4 prevented TGF-β–induced dermal fibrosis in vivo in a mouse model, ex vivo in human skin, and in bleomycin-induced dermal and pulmonary fibrosis in vivo, demonstrating that E4 exerts potent antifibrotic effects. In addition, E4 significantly reduced existing fibrosis in these preclinical models. E4 amelioration of fibrosis was accompanied by reduced cell apoptosis and lower levels of lysyl oxidase, an enzyme that cross-links collagen, and Egr-1 (early growth response gene–1), a transcription factor that mediates the effects of several fibrotic triggers. Our findings identify E4 as a peptide with potent antifibrotic activity and a possible therapeutic agent for organ fibrosis.
Respiratory RNA viruses responsible for the common cold often worsen airway inflammation and bronchial responsiveness, two characteristic features of human asthma. We studied the effects of dsRNA, a nucleotide synthesized during viral replication, on airway inflammation and bronchial hyperresponsiveness in murine models of asthma. Intratracheal instillation of poly I:C, a synthetic dsRNA, increased the airway eosinophilia and enhanced bronchial hyperresponsiveness to methacholine in OVA-sensitized, exposed rats. These changes were associated with induction of cyclooxygenase-2 (COX-2) expression and COX-2-dependent PGD2 synthesis in the lungs, particularly in alveolar macrophages. The direct intratracheal instillation of PGD2 enhanced the eosinophilic inflammation in OVA-exposed animals, whereas pretreatment with a dual antagonist against the PGD2 receptor-(CRTH2) and the thromboxane A2 receptor, but not with a thromboxane A2 receptor-specific antagonist, nearly completely eliminated the dsRNA-induced worsening of airway inflammation and bronchial hyperresponsiveness. CRTH2-deficient mice had the same degree of allergen-induced airway eosinophilia as wild-type mice, but they did not exhibit a dsRNA-induced increase in eosinophil accumulation. Our data demonstrate that COX-2-dependent production of PGD2 followed by eosinophil recruitment into the airways via a CRTH2 receptor are the major pathogenetic factors responsible for the dsRNA-induced enhancement of airway inflammation and responsiveness.
Allergic bronchopulmonary mycosis, characterized by excessive mucus secretion, airflow limitation, bronchiectasis, and peripheral blood eosinophilia, is predominantly caused by a fungal pathogen, Aspergillus fumigatus. Using DNA microarray analysis of NCI-H292 cells, a human bronchial epithelial cell line, stimulated with fungal extracts from A. fumigatus, Alternaria alternata, or Penicillium notatum, we identified a mucin-related MUC5AC as one of the genes, the expression of which was selectively induced by A. fumigatus. Quantitative RT-PCR, ELISA, and histochemical analyses confirmed an induction of mucin and MUC5AC expression by A. fumigatus extracts or the culture supernatant of live microorganisms in NCI-H292 cells and primary cultures of airway epithelial cells. The expression of MUC5AC induced by A. fumigatus extracts diminished in the presence of neutralizing Abs or of inhibitors of the epidermal growth factor receptor or its ligand, TGF-α. We also found that A. fumigatus extracts activated the TNF-α–converting enzyme (TACE), critical for the cleavage of membrane-bound pro–TGF-α, and its inhibition with low-molecular weight inhibitors or small interfering RNA suppressed the expression of MUC5AC. The protease activity of A. fumigatus extracts was greater than that of other fungal extracts, and treatment with a serine protease inhibitor, but not with a cysteine protease inhibitor, eliminated its ability to activate TACE or induce the expression of MUC5AC mRNA in NCI-H292. In conclusion, the prominent serine protease activity of A. fumigatus, which caused the overproduction of mucus by the bronchial epithelium via the activation of the TACE/TGF-α/epidermal growth factor receptor pathway, may be a pathogenetic mechanism of allergic bronchopulmonary mycosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.