To suppress the electric field in the gate oxide in a trench gate MOSFET (UMOSFET) with small cell pitch, we developed a technique to form the p+ region using self-aligned ion implantation under the gate trench. To prevent Al+ injection into the trench sidewalls, conditions of thin oxide layer deposition and Al+ implantation were optimized by process simulation. The resulting SiC trench MOS capacitors exhibited long-term reliability, with no degradation in lifetime by the p+ shielding region, and a specific on-resistance of 9.4 mΩ cm2 with a blocking voltage of 3800 V was achieved in the UMOSFET.
A critical issue with the SiC UMOSFET is the need to develop a shielding structure for the gate oxide at the trench bottom without any increase in the JFET resistance. This study describes our new UMOSFET named IE-UMOSFET, which we developed to cope with this trade-off. A simulation showed that a low on-resistance is accompanied by an extremely low gate oxide field even with a negative gate voltage. The low RonA was sustained as Vth increases. The RonA values at VG=25 V (Eox=3.2 MV/cm) and VG=20V (Eox=2.5 MV/cm), respectively, for the 3mm x 3mm device were 2.4 and 2.8 mWcm2 with a lowest Vth of 2.4 V, and 3.1 and 4.4 mWcm2 with a high Vth of 5.9 V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.