A pairing-friendly curve is a curve over a finite field whose Jacobian has small embedding degree with respect to a large prime-order subgroup. In this paper we construct pairing-friendly genus 2 curves over finite fields F q whose Jacobians are ordinary and simple, but not absolutely simple. We show that constructing such curves is equivalent to constructing elliptic curves over F q that become pairing-friendly over a finite extension of F q . Our main proof technique is Weil restriction of elliptic curves. We describe adaptations of the Cocks-Pinch and Brezing-Weng methods that produce genus 2 curves with the desired properties. Our examples include a parametric family of genus 2 curves whose Jacobians have the smallest recorded ρ-value for simple, non-supersingular abelian surfaces.
In hyperelliptic curve cryptography, finding a suitable hyperelliptic curve is an important fundamental problem. One of necessary conditions is that the order of its Jacobian is a product of a large prime number and a small number. In the paper, we give a probabilistic polynomial time algorithm to test whether the Jacobian of the given hyperelliptic curve of the form Y 2 = X 5 + uX 3 + vX satisfies the condition and, if so, to give the largest prime factor. Our algorithm enables us to generate random curves of the form until the order of its Jacobian is almost prime in the above sense. A key idea is to obtain candidates of its zeta function over the base field from its zeta function over the extension field where the Jacobian splits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.