The epidermal growth factor receptor (EGFR) has an essential role in multiple signaling pathways, including cell proliferation and migration, through extracellular ligand binding and subsequent activation of its intracellular tyrosine kinase (TK) domain. The non-small cell lung cancer (NSCLC)-associated EGFR mutants, L858R and G719S, are constitutively active and oncogenic. They display sensitivity to TK inhibitors, including gefitinib and erlotinib. In contrast, the secondary mutation of the gatekeeper residue, T790M, reportedly confers inhibitor resistance on the oncogenic EGFR mutants. In this study, our biochemical analyses revealed that the introduction of the T790M mutation confers gefitinib resistance on the G719S mutant. The G719S/T790M double mutant has enhanced activity and retains high gefitinib-binding affinity. The T790M mutation increases the ATP affinity of the G719S mutant, explaining the acquired drug resistance of the double mutant. Structural analyses of the G719S/T790M double mutant, as well as the wild type and the G719S and L858R mutants, revealed that the T790M mutation stabilizes the hydrophobic spine of the active EGFR-TK conformation. The Met790 side chain of the G719S/T790M double mutant, in the apo form and gefitinib- and AMPPNP-bound forms, adopts different conformations that explain the accommodation of these ligands. In the L858R mutant structure, the active-site cleft is expanded by the repositioning of Phe723 within the P-loop. Notably, the introduction of the F723A mutation greatly enhanced the gefitinib sensitivity of the wild-type EGFR in vivo, supporting our hypothesis that the expansion of the active-site cleft results in enhanced gefitinib sensitivity. Taken together, our results provide a structural basis for the altered drug sensitivities caused by distinct NSCLC-associated EGFR mutations.
The mitochondrial pyruvate dehydrogenase complex (PDC) catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA. PDC activity is tightly regulated by four members of a family of pyruvate dehydrogenase kinase isoforms (PDK1-4), which phosphorylate and inactivate PDC. Recently, the development of specific inhibitors of PDK4 has become an especially important focus for the pharmaceutical management of diabetes and obesity. In this study, crystal structures of human PDK4 complexed with either AMPPNP, ADP or the inhibitor M77976 were determined. ADP-bound PDK4 has a slightly wider active-site cleft and a more disordered ATP lid compared with AMPPNP-bound PDK4, although both forms of PDK4 assume open conformations with a wider active-site cleft than that in the closed conformation of the previously reported ADP-bound PDK2 structure. M77976 binds to the ATP-binding pocket of PDK4 and causes local conformational changes with complete disordering of the ATP lid. M77976 binding also leads to a large domain rearrangement that further expands the active-site cleft of PDK4 compared with the ADP- and AMPPNP-bound forms. Biochemical analyses revealed that M77976 inhibits PDK4 with increased potency compared with the previously characterized PDK inhibitor radicicol. Thus, the present structures demonstrate for the first time the flexible and dynamic aspects of PDK4 in the open conformation and provide a basis for the development of novel inhibitors targeting the nucleotide-binding pocket of PDK4.
Tetrasulfonate derivatives of calix[4]resorcarene (calix[4]arene derived from resorcinol) (1) form 1 : 1 complexes with highly hydrophilic guest molecules, such as ethers, alcohols, ketones, and sulfoxides, in water. The affinities of three types of the guests increase in the order CH3–X–CH3 < (–CH2CH2–X–)2 < CH3–X–CH2CH2–X–CH3 (X = O, CH(OH), C=O, or S=O), reflecting the importance of multiple host-guest interactions. The binding constants (K) with respect to X increase in the order O < CH(OH) < C=O < S=O or CH(OH) < O < C=O < S=O. As for the effects of substituents Y on 2-C of the benzene rings of the host, both 1b (Y = CH3) and 1c (Y = OH) exhibit higher binding capabilities than does the parent host 1a (Y = H). Thus, the present complexation is promoted by electron-withdrawing residue (X) in the guests and electron-donating substituents (Y) in the host. The binding of CH3–X–CH3 (X = C=O or S=O) to hosts 1a—c is characterized by favorable enthalpy changes and unfavorable entropy changes. These results, coupled with NMR data, indicate that the driving force of the present complexation is a C–H···π interaction between C–H bonds of a guest as soft acids and benzene rings of the host as soft bases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.