Here, we carried out a survey to determine the prevalence of free-living amoebae (FLA) in tap-water sources from rivers and water treatment plants located in Osaka Prefecture, Japan. A total of 374 raw water samples were collected from 113 sampling points. The samples were filtrated and transferred to non-nutrient agar plates seeded with a heat-killed suspension of Escherichia coli and incubated for 2 to 7 days at 30 degrees C or 42 degrees C. The plates were examined by microscopy to morphologically identify FLA families, and polymerase chain reaction and sequence analysis were then performed to define the species of the detected Naegleria and Acanthamoeba isolates. A total of 257 of 374 samples (68.7%) were positive for FLA by microscopy, and among these there were 800 FLA isolates, including Acanthamoeba and Naegleria species. Sequence analysis identified five Acanthamoeba spp. isolates of the known pathogenic T4 genotype and 43 Naegleria australiensis isolates, a reported pathogen to mice and also of concern as a potential pathogen to humans. Our results suggest a wide distribution of FLA, including potential pathogenic species, in tap-water sources of western Japan.
ABSTRACT. Babesia microti, the erythroparasitic cause of human babesiosis, has long been taken to be a single species because classification by parasite morphology and host spectrum blurred distinctions between the parasites. Phylogenetic analyses of the 18S ribosomal RNA gene (18S rDNA) and, more recently, the β-tubulin gene have suggested inter-group heterogeneity. Intra-group relationships, however, remain unknown. This study was conducted to clarify the intra-and inter-group phylogenetic features of the B. microti-group parasites with the η subunit of the chaperonin-containing t-complex polypeptide l (CCTη) gene as a candidate genetic marker for defining the B. microti group. We prepared complete sequences of the CCTη gene from 36 piroplasms and compared the phylogenetic trees. The B. microti-group parasites clustered in a monophyletic assemblage separate from the Babesia sensu stricto and Theileria genera and subdivided predominantly into 4 clades (U.S., Kobe, Hobetsu, Munich) with highly significant evolutionary distances between the clades. B. rodhaini branched at the base of the B. microti-group parasites. In addition, a unique intron presence/absence matrix not observable in 18S rDNA or β-tubulin set the B. microti group entirely apart from either Babesia sensu stricto or Theileria. These results have strong implications for public health, suggesting that the B. microti-group parasites are a full-fledged genus comprising, for now, four core species, i.e., U.S., Kobe, Hobetsu, and Munich species nova. Furthermore, the CCTη gene is an instructive and definitive genetic marker for analyzing B. microti and related parasites.
This study aimed to investigate intestinal helminth infection in stray dogs in Osaka
Prefecture by surveying coprological samples from dogs captured from 2006–2011. Of 212
fecal samples collected, overall prevalence of infection was 39.2%. The most common
species was Toxocara canis (25.0%), followed by Trichuris
vulpis (8.0%), Spirometra erinaceieuropaei (3.3%), Taeniidae
(2.4%), Ancylostoma caninum (1.9%) and Toxascaris
leonine (0.5%). In the molecular analysis, all of the taeniid eggs were
negative for Echinococcus multilocularis and were identified as other
taeniid species (e.g., Taenia pisiformis). Our results suggest that stray
dogs remain important infection reservoirs of zoonotic parasites in Osaka Prefecture.
Therefore, control of stray dogs is crucial for reducing the risk of public health
problems due to parasitic infections.
We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.