Interleukin-6 (IL-6) is a pleiotropic cytokine that affects various functions, including tumor development. Although the importance of IL-6 in gastric cancer has been documented in experimental and clinical studies, the mechanism by which IL-6 promotes gastric cancer remains unclear. In this study, we investigated the role of IL-6 in the epithelial–stromal interaction in gastric tumorigenesis. Immunohistochemical analysis of human gastritis, gastric adenoma, and gastric cancer tissues revealed that IL-6 was frequently detected in the stroma. IL-6–positive cells in the stroma showed positive staining for the fibroblast marker α-smooth muscle actin, suggesting that stromal fibroblasts produce IL-6. We compared IL-6 knockout (IL-6−/−) mice with wild-type (WT) mice in a model of gastric tumorigenesis induced by the chemical carcinogen N-methyl-N-nitrosourea. The stromal fibroblasts expressed IL-6 in tumors from WT mice. Gastric tumorigenesis was attenuated in IL-6−/− mice, compared with WT mice. Impaired tumor development in IL-6−/− mice was correlated with the decreased activation of STAT3, a factor associated with gastric cancer cell proliferation. In vitro, when gastric cancer cell line was co-cultured with primary human gastric fibroblast, STAT3–related genes including COX-2 and iNOS were induced in gastric cancer cells and this response was attenuated with neutralizing anti-IL-6 receptor antibody. IL-6 production from fibroblasts was increased when fibroblasts were cultured in the presence of gastric cancer cell–conditioned media. IL-6 production from fibroblasts was suppressed by an interleukin-1 (IL-1) receptor antagonist and siRNA inhibition of IL-1α in the fibroblasts. IL-1α mRNA and protein were increased in fibroblast lysate, suggesting that cell-associated IL-1α in fibroblasts may be involved. Our results suggest the importance of IL-6 mediated stromal-epithelial cell interaction in gastric tumorigenesis.
cHelicobacter pylori infection is associated with gastritis and gastric cancer. An H. pylori virulence factor, the cag pathogenicity island (PAI), is related to host cell cytokine induction and gastric inflammation. Since elucidation of the mechanisms of inflammation is important for therapy, the associations between cytokines and inflammatory diseases have been investigated vigorously. Levels of interleukin-32 (IL-32), a recently described inflammatory cytokine, are increased in various inflammatory diseases, such as rheumatoid arthritis and Crohn's disease, and in malignancies, including gastric cancer. In this report, we examined IL-32 expression in human gastric disease. We also investigated the function of IL-32 in activation of the inflammatory cytokines in gastritis. IL-32 expression paralleled human gastric tissue pathology, with low IL-32 expression in H. pylori-uninfected gastric mucosa and higher expression levels in gastritis and gastric cancer tissues. H. pylori infection increased IL-32 expression in human gastric epithelial cell lines. H. pylori-induced IL-32 expression was dependent on the bacterial cagPAI genes and on activation of nuclear factor B (NF-B). IL-32 expression induced by H. pylori was not detected in the supernatant of AGS cells but was found in the cytosol. Expression of the H. pylori-induced cytokines CXCL1, CXCL2, and IL-8 was decreased in IL-32-knockdown AGS cell lines compared to a control AGS cell line. We also found that NF-B activation was decreased in H. pylori-infected IL-32-knockdown cells. These results suggest that IL-32 has important functions in the regulation of cytokine expression in H. pylori-infected gastric mucosa.
Histopathological changes of the gastric mucosa after Helicobacter pylori infection, such as atrophy, metaplasia, and dysplasia, are considered to be precursors of gastric cancer, yet the mechanisms of histological progression are unknown. The aim of this study was to analyze the histopathological features of the gastric mucosa in mice infected with H. pylori strain PMSS1 in relation to gastric stem cell marker expression. C57BL/6J mice infected with PMSS1 were examined for histopathological changes, levels of proinflammatory cytokines, and expression of stem cell markers. Histopathological gastritis scores, such as atrophy and metaplasia, and levels of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-␣) and interleukin-1 (IL-1), were increased after PMSS1 infection. Expression levels of the cell proliferation and stem cell markers CD44 and SOX9 were also significantly increased in PMSS1-infected mice. Importantly, almost all metaplastic cells induced by PMSS1 infection expressed SOX9. When IL-1 receptor (IL-1R) knockout mice were infected with PMSS1, metaplastic changes and expression levels of stem cell markers were significantly decreased compared with those in wild-type (WT) mice. In conclusion, H. pylori infection induced the expression of cytokines and stem cell markers and histopathological metaplasia in the mouse gastric mucosa. SOX9 expression, in particular, was strongly associated with metaplastic changes, and these changes were dependent on IL-1 signaling. The results suggested the importance of SOX9 in gastric carcinogenesis. Helicobacter pylori, a microaerophilic, spiral-shaped, Gramnegative bacterium, was first isolated in 1983 by Warren and Marshall (1). H. pylori colonizes the human gastric epithelium, causing atrophic gastritis and potentially triggering histological progression to carcinoma (2-4). Epidemiological studies have shown that cag pathogenicity island (PAI)-positive H. pylori strains are more likely to cause atrophic gastritis and gastric cancer than are cag PAI-negative strains (5-7).The cag PAI, a cluster of ϳ30 genes encoding a type IV secretion system (T4SS), is a major virulence factor of H. pylori. Studies of host cell signaling by H. pylori strains with the cag PAI revealed that important intracellular signaling cascades, including nuclear factor B (NF-B) and mitogen-activated protein kinase (MAPK), were especially activated by these types of strains (8, 9). Consequent upregulation and secretion of interleukin-8 (IL-8) from epithelial cells recruit activated neutrophils and monocytes into the lamina propria, where they secrete proinflammatory cytokines such as IL-1 and tumor necrosis factor alpha (TNF-␣) (10, 11).In animal models of H. pylori infection, the SS1 strain, which contains cagA genes, has been widely employed (12). However, it was recently revealed that the SS1 strain had a nonfunctional cag PAI and did not induce IL-8 or translocate CagA (13). In contrast, it was reported previously that the original human isolates, designated pre-mouse SS1 (P...
IM is a good predictive marker for the development of gastric cancer.
BackgroundAlthough some molecularly targeted drugs for colorectal cancer are used clinically and contribute to a better prognosis, the current median survival of advanced colorectal cancer patients is not sufficient. Autophagy, a basic cell survival mechanism mediated by recycling of cellular amino acids, plays an important role in cancer. Recently, autophagy has been highlighted as a promising new molecular target. The unfolded protein response (UPR) reportedly act in complementary fashion with autophagy in intestinal homeostasis. However, the roles of UPR in colon cancer under autophagic inhibition remain to be elucidated. We aim to clarify the inhibitory effect of autophagy on colon cancer.MethodsWe crossed K19CreERT and Atg5flox/flox mice to generate Atg5flox/flox/K19CreERT mice. Atg5flox/flox/K19CreERT mice were first treated with azoxymethane/dextran sodium sulfate and then injected with tamoxifen to inhibit autophagy in CK19-positive epithelial cells. To examine the anti-cancer mechanisms of autophagic inhibition, we used colon cancer cell lines harboring different p53 gene statuses, as well as small interfering RNAs (siRNAs) targeting Atg5 and immunoglobulin heavy-chain binding protein (BiP), a chaperone to aid folding of unfolded proteins.ResultsColon tumors in Atg5flox/flox/K19CreERT mice showed loss of autophagic activity and decreased tumor size (the total tumor diameter was 28.1 mm in the control and 20.7 mm in Atg5flox/flox/K19CreERT mice, p = 0.036). We found that p53 and UPR/endoplasmic reticulum (ER) stress-related proteins, such as cleaved caspase 3, and CAAT/enhancer-binding protein homologous protein, are up-regulated in colon tumors of Atg5flox/flox/K19CreERT mice. Although Atg5 and BiP silencing, respectively, increased apoptosis in p53 wild type cells, Atg5 silencing alone did not show the same effect on apoptosis in p53 mutant cells. However, co-transfection of Atg5 and BiP siRNAs led to increased apoptosis in p53 mutant cells.ConclusionsBlocking autophagy has potential in the treatment of colon cancer by inducing apoptosis via p53 and ER stress, and suppressing the UPR pathway is a valid strategy to overcome resistance to autophagic inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.