B7-DC, one of the recently described B7 family members, has the capacity to inhibit T cell responses via engagement of the immunoreceptor tyrosine-based inhibitory motif–containing inhibitory PD-1 receptor as well as enhance responses via an as yet unidentified costimulatory receptor. B7-DC is highly homologous to a coinhibitory B7 family member, B7-H1, which also binds PD-1. It is currently unclear which B7-DC function—costimulation or inhibition—predominates in vivo. To study in vivo functions of B7-DC, we evaluated immune responses in B7-DC knockout (KO) mice. Although not eliminated, interferon-γ (IFN-γ) production by CD4 T cells and IFN-γ–dependent humoral responses were reduced in B7-DC KO mice relative to wild type mice. Antigen-specific CD8 T cell responses and cytotoxic T lymphocyte (CTL) activity were also diminished in B7-DC KO mice. Hepatic tumors grew more quickly in B7-DC KO mice, associated with a decrease in intrahepatic tumor-specific CD8 T cells. These results highlight the contrasting in vivo roles of B7-DC and B7-H1 and indicate that B7-DC functions as a tuning molecule, selectively augmenting T helper 1 and CTL responses.
Both innate and adaptive immune systems are considered important for cancer prevention, immunosurveillance, and control of cancer progression. It is known that, although both systems initially eliminate emerging tumor cells efficiently, tumors eventually escape immune attack by a variety of mechanisms, including differentiation and recruitment of immunosuppressive CD11b+Gr-1+ myeloid suppressor cells into the tumor microenvironment. However, we show that CD11b+Gr-1+ cells found in ascites of epithelial ovarian cancer-bearing mice at advanced stages of disease are immunostimulatory rather than being immunosuppressive. These cells consist of a homogenous population of cells that morphologically resemble neutrophils. Moreover, like dendritic cells, immunostimulatory CD11b+Gr-1+ cells can strongly cross-prime, augmenting the proliferation of functional CTLs via signaling through the expression of costimulatory molecule CD80. Adoptive transfer of these immunostimulatory CD11b+Gr-1+ cells from ascites of ovarian cancer-bearing mice results in the significant regression of s.c. tumors even without being pulsed with exogenous tumor Ag prior to adoptive transfer. We now show for the first time that adaptive immune responses against cancer can be augmented by these cancer-induced granulocyte-like immunostimulatory myeloid (CD11b+Gr-1+) cells, thereby mediating highly effective antitumor immunity in an adoptive transfer model of immunity.
Summary Because most patients with cancer are aged and because immunological functions are altered during aging, it is important to account for aging-associated immunological alterations in the design of new cancer immunotherapies. We thus compared immune populations in young and aged mice and found that B7-DC+ (PD-L2/CD273) B cells, a minor population in young mice, were significantly increased in aged mice. Induction of both Th1 and Th17 cells was significantly augmented by B7-DC+ B cells from aged mice, and this effect was blocked with anti-B7-DC antibodies in vitro and in vivo. Moreover, retardation of tumor growth in aged mice was largely B7-DC dependent. Tumor growth in young mice was significantly inhibited by immunization with B7-DC+ B cells from aged mice owing to increased induction of tumor antigen-specific cytotoxic T lymphocytes. These data indicate that B7-DC+ B cells could play an important role in aging-associated cancer immunopathology as well as in other aging-associated diseases and further suggest that B7-DC+ B cells have potential for future cancer immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.