Renal unilateral ureteral obstruction (UUO) causes acute generation of alpha-dicarbonyl stress substances, such as glyoxal, 3-deoxyglucosone, and methylglyoxal, in the kidneys. These alpha-dicarbonyl compounds are prone to form advanced glycation end products (AGEs) via the nonenzymatic Maillard reaction. Using transgenic (Tg) mice overexpressing a kidney-specific short-chain oxidoreductase, alpha-dicarbonyl/L-xylulose reductase (DCXR), we measured generation of alpha-dicarbonyls following UUO by means of electrospray ionization/liquid chromatography/mass spectrometry in their kidney extracts. The accumulation of 3-deoxyglucosone was significantly reduced in the kidneys of the mice Tg for DCXR compared to their wild-type littermates, demonstrating 4.91 +/- 2.04 vs. 6.45 +/- 1.85 ng/mg protein (P = 0.044) for the obstructed kidneys, and 3.68 +/- 1.95 vs. 5.20 +/- 1.39 ng/mg protein (P = 0.026) for the contralateral kidneys. Despite the reduction in accumulated alpha-dicarbonyls, collagen III content in kidneys of the Tg mice and their wild-type littermates showed no difference as monitored by in situ hybridization. Collectively, DCXR may function in the removal of renal alpha-dicarbonyl compounds under oxidative circumstances, but it is not sufficient to suppress acute renal fibrosis during 7 days UUO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.