An enzyme catalyzing the hydrolysis of purine nucleosides was found to occur in the extract of Azotobacter vinelandii, strain O, and was highly purified by ammonium sulfate fractionation, DEAE-cellulose chromatography, hydroxylapatite chromatography and gel filtration on Sephadex G-150. A strict substrate specificity of the purified enzyme was shown with respect to the base components. The enzyme specifically attacked the nucleosides without amino groups in the purine moiety: inosine gave the maximum rate of hydrolysis and xanthosine was hydrolyzed to a lesser extent. The pH optimum of inosine hydrolysis was observed from pH 7 to 9, while xanthosine was hydrolyzed maximally at pH 7. The Km values of the enzyme for inosine were 0.65 and 0.85 mM at pH 7.1 and 9.0, respectively, and the value for xanthosine was 1.2 mM at pH 7.1. Several nucleotides inhibited the enzyme: the phosphate portions of the nucleotides were suggested to be responsible for the inhibition by nucleotides. Although the inhibition of the enzyme by nucleotides was apparently non-competitive type with respect to inosine, allosteric (cooperative) binding of the substrate was suggested in the presence of the inhibitor. The physiological significance of the enzyme was discussed in connection with the degradation and salvage pathways of purine nucleotides.
Adenosine deaminase (EC 3.5.4.4) was found to occur in the extract of Azotobacter vinelandii, strain 0, and purified by heating at 65 degrees C, fractionation with ammonium sulfate, DEAE-cellulose chromatography and gel filtration on Sephadex G-150. Purified adenosine deaminase was effectively stabilized by the addition of ethylene glycol. The molecular weight of the enzyme was estimated to be 66,000 by gel filtration on Sephadex G-150. The enzyme specifically attacked adenosine and 2'-deoxyadenosine to the same extent, and formycin A to a lesser extent. The pH optimum of the enzyme was observed at pH 7.2. Double reciprocal plot of initial velocity versus adenosine concentration was concave upward, and Hill interaction coefficient was calculated to be 1.5, suggesting the allosteric binding of the substrate. ATP inhibited adenosine deaminase in an allosteric manner, whereas other nucleotides were without effect. The physiological significance of the enzyme was discussed in relation to salvage pathway of purine nucleotides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.