Peripheral structural modifications of arenes are widely used to control or improve the optoelectronic properties, molecular assembly, and stability of aromatic π-materials as well as to explore new functions. However, known modifications are often tedious and complex; therefore, a simple yet powerful modification strategy is needed. We discovered that annulation with a simple adamantane scaffold exerts a significant impact on the properties, alignment, and stability of aromatic π-systems. This unprecedented adamantane annulation was achieved by a two-step transformation of metallated arenes and 4-protoadamantanone, generating a range of adamantane-annulated arenes. Analysis of structural and electronic properties uncovered unique effects of the process, such as high solubility and enhanced conjugation. The oxidation of adamantane-annulated perylenes produced strikingly stable cationic species with emission extended to the near-infrared region. This simple property modulation of aromatic π-systems would not only create potentially ground-breaking π-materials but also novel nanocarbon materials, such as diamond−graphene hybrids.
Peripheral structural modifications of arenes are widely used to control or improve the optoelectronic properties, molecular assembly, and stability of aromatic pi-materials as well as to explore new functions. However, known modifications are often tedious and complex; therefore, a simple yet powerful modification strategy is needed. We discovered that annulation with a simple adamantane scaffold exerts a significant impact on the properties, alignment, and stability of aromatic pi-systems. This unprecedented adamantane annulation was achieved by a two-step transformation of metalated arenes and 4-protoadamantanone, generating a range of adamantane-annulated arenes. Analysis on structural and electronic property uncovered unique effects of the process, such as high solubility and enhanced conjugation. The oxidation of adamantane-annulated perylenes produced strikingly stable cationic species with emission extended to near-infrared region. This simple property modulation of aromatic pi-systems would not only create potentially ground-breaking oi-materials but also novel nanocarbon materials, such as diamond-graphene hybrids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.