Synthesis of N-hydroxysuccinimide from succinic acid and hydroxylammonium chloride using Amberlyst A21 as reusable solid base catalyst AIP Conference Proceedings 1929, 020017 (2018) Abstract. Carbon nanocoil (CNC) is a carbon nanofiber with helical shape. In this study, we fabricated CNC-based composites endowed with electromagnetic wave absorption property. CNCs were synthesized by chemical vapor deposition using acetylene as a precursor and Fe and SnO 2 particles as catalysts. The composites were produced by dispersing CNCs into epoxy resin or paraffin by ultrasonication, and then hardening a droplet of the solution on an aluminum substrate with ca. 2mm in specimen thickness. Paraffin was used as a solvent when producing the composites with the CNC concentration higher than or equal to 5wt.%; otherwise epoxy was used. The reflection ratio of the composites with different concentrations were measured by the free space method using lens antennas in frequency ranges of 5.6-40 and 67-110 GHz. The CNCs/epoxy composites of 0.1-1.0 wt.% showed poor reflection losses. The 10 wt.% CNCs/paraffin composite achieved a reflection loss of −32 dB at 79.2 GHz. Its bandwidth corresponding to the reflection loss below −20 dB was 4.85 GHz. The CNCs/paraffin composite also turned out to show a good absorption property in W band frequencies .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.