We examined GH and GH receptor expression in human leukemic cell lines and leukocytes of normal subjects to elucidate the cell types expressing GH and GH receptor, the individual variations of their expressions, their correlation and the relationships with serum IgG and IGF-I concentrations. In addition, the expression of GH secretagogue receptor, which enhances GH secretion from the anterior pituitary by synthetic GH secretagogues and that of its endogenous ligand, ghrelin, were also examined in these immune cells. GH expression in human leukemic cell lines was observed mainly in B cell lines at both the mRNA and protein level [3.8 +/- 0.2 pg/10(6) cells in Raji and 19.9 +/- 3.3 pg/10(6) cells in Daudi vs. negligible in T cell lines (Jurkat and Hut-78) and in myeloid cell lines (K-562 and HL-60)]. B cells in normal subjects were also found to be the major immune cells expressing GH mRNA, with significant individual variation. GH receptor mRNA expression was detectable in all human leukemic cell lines, although the expression level varied widely among the cell lines and was weaker than that in the liver. On the other hand, GH receptor mRNA expression was mainly found in B cells, with marked individual variation in normal subjects. There was a positive correlation between the mRNA expressions of GH and GH receptor in B cells of normal subjects (r = 0.89; P < 0.001). Single cell RT-PCR revealed that some B cells expressed both GH and GH receptor transcripts, and others expressed only GH. GH/GH receptor expression levels in B cells did not show any correlation with serum IgG and IGF-I levels in normal subjects. Expression of GH secretagogue receptor and ghrelin was detectable in all immune cells regardless of the maturity and cell types with great individual variations. In summary, GH secreted from B cells may act locally on their own receptors, and their variable expressions may be related to individual immune functions. Widespread distribution of ghrelin and GH secretagogue receptor in human immune cells may indicate unknown biological functions other than enhancing GH secretion in the immune system.
This study was conducted to elucidate the effects of electroconvulsive therapy (ECT) on frontal white matter in late-life depressed patients. Diffusion tensor imaging was performed on 8 late-life depressed patients and 12 healthy age-matched controls. The patients were scanned before and after a course of ECT. Fractional anisotropy (FA) was determined in the frontal and temporal regions and the corpus callosum. A significant white matter FA reduction was found in widespread frontal and temporal brain regions in patients with depression before ECT treatment compared with controls. A significant increase in frontal white matter FA was seen following ECT treatment. A course of bilateral ECT ameliorated white matter integrity in frontal brain regions. This suggests a strong relationship with the antidepressant action of ECT.
To explore brain functions in schizophrenic patients, the global analytic strategy of multichannel EEG was performed that combines measures of global complexity (Ω), total power (Σ) and generalized frequency (Φ), and EEG microstate analysis was applied to multichannel EEG data for 24 nonmedicated patients and 24 healthy subjects. The patients had higher Ω and Σ values, and lower Φ values compared with healthy subjects. Three topographical classes were obtained from all EEG data by EEG microstate analysis. The mean duration of one topographical class in the patients was shortened compared to healthy subjects. These results indicated looser cooperativity, or decreased connectivity of the active brain process and deviant brain information processing in schizophrenic patients.
Rationale Both psychotropic drugs and mental disorders have typical signatures in quantitative electroencephalography (EEG). Previous studies found that some psychotropic drugs had EEG effects opposite to the EEG effects of the mental disorders treated with these drugs (key-lock principle). Objectives We performed a placebo-controlled pharmaco-EEG study on two conventional antipsychotics (chlorpromazine and haloperidol) and four atypical antipsychotics (olanzapine, perospirone, quetiapine, and risperidone) in healthy volunteers. We investigated differences between conventional and atypical drug effects and whether the drug effects were compatible with the key-lock principle.Methods Fourteen subjects underwent seven EEG recording sessions, one for each drug (dosage equivalent of 1 mg haloperidol). In a time-domain analysis, we quantified the EEG by identifying clusters of transiently stable EEG topographies (microstates). Frequency-domain analysis used absolute power across electrodes and the location of the center of gravity (centroid) of the spatial distribution of power in different frequency bands. Results Perospirone increased duration of a microstate class typically shortened in schizophrenics. Haloperidol increased mean microstate duration of all classes, increased alpha 1 and beta 1 power, and tended to shift the beta 1 centroid posterior. Quetiapine decreased alpha 1 power and shifted the centroid anterior in both alpha bands. Olanzapine shifted the centroid anterior in alpha 2 and beta 1. Conclusions The increased microstate duration under perospirone and haloperidol was opposite to effects previously reported in schizophrenic patients, suggesting a key-lock mechanism. The opposite centroid changes induced by olanzapine and quetiapine compared to haloperidol might characterize the difference between conventional and atypical antipsychotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.