The normal spectral emissivity of molten copper was determined in the wavelength range of 780–920 nm and in the temperature range of 1288–1678 K, by directly measuring the radiance emitted by an electromagnetically levitated molten copper droplet under a static magnetic field of 1.5 T. The spectrometer for radiance measurement was calibrated using the relation between the theoretical blackbody radiance from Planck's law and the light intensity of a quasi-blackbody radiation source measured using a spectrometer at a given temperature. As a result, the normal spectral emissivity of molten copper was determined as 0.075 ± 0.011 at a wavelength of 807 nm, and it was found that its temperature dependence is negligible in the entire measurement temperature range tested. In addition, the results of the normal spectral emissivity and its wavelength dependence were discussed, in comparison with those obtained using the Drude free-electron model.
The thermal conductivity of molten copper was measured by the periodic laser-heating method, in which a static magnetic field was superimposed to suppress convection in an electromagnetically levitated droplet, to extend the measurement range of the method up to a relatively high thermal conductivity. Before measuring the thermal conductivity, the optimum conditions for static magnetic field, the laser frequency of periodic heating and sample diameter were investigated by numerical simulation both for the flow and thermal fields in an electromagnetically levitated droplet and for the periodic laser heating of the droplet in the presence of melt convection. As a result, the temperature dependence of the thermal conductivity of molten copper was proposed in the temperature range between 1383 and 1665 K. In addition, by comparing our results with those of previous studies, it was demonstrated that the present method of measuring thermal conductivity is also available for molten materials with a relatively high thermal conductivity, such as molten copper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.