Colloidal platinum nanoparticles with diameters of 2-5 nm on carbon supports are currently regarded as the best catalysts for the oxygen reduction reaction. However, the particle size is limited by the conventional preparation methods that are used to synthesize small platinum particles; the inherent activity of ultrasmall nanoparticles has not yet been revealed. We present a practical synthesis for ultrafine subnanometre platinum clusters using a spherical macromolecular template with no disorder in molecular weight or structure. The template, a phenylazomethine dendrimer, offers control of the number of metal complexes in an assembly through stepwise complexation, allowing the complexes to accumulate in discrete nano-cages. Subsequent reduction of Pt(IV) chloride to Pt(0) results in the formation of platinum clusters composed of a defined number of atoms. As a result of exceptionally small particle size, the clusters exhibit very high catalytic activity for the four-electron reduction of oxygen molecules.
A relationship between the size of metal particles and their catalytic activity has been established over a nanometer scale (2-10 nm). However, application on a subnanometer scale (0.5-2 nm) is difficult, a possible reason being that the activity no longer relies on the size but rather the geometric structure as a cluster (or superatomic) compound. We now report that the catalytic activity for the oxygen reduction reaction (ORR) significantly increased when only one atom was removed from a magic number cluster composed of 13-platinum atoms (Pt13). The synthesis with an atomic-level precision was successfully achieved by using a dendrimer ligand as the macromolecular template strictly defining the number of metal atoms. It was quite surprising that the Pt12 cluster exhibited more than 2-fold catalytic activity compared with that of the Pt13 cluster. ESI-TOF-mass and EXAFS analyses provided information about the structures. These analyses suggested that the Pt12 has a deformed coordination, while the Pt13 has a well-known icosahedral atomic coordination as part of the stable cluster series. Theoretical analyses based on density functional theory (DFT) also supported this idea. The present results suggest potential activity of the metastable clusters although they have been "missing" species in conventional statistical synthesis.
Among various approaches synthesizing metal nanoparticles and tiny clusters, a template method using dendrimers has significant advantages over other chemical approaches with respect to their synthetic precision and the scalability. A dendrimer of polydentate ligands assembles metal ions or salts into the interior allowing production of metal nanoparticles in the dendrimer. The dendrimer-encapsulated nanoparticles (DENs) exhibit unique and remarkable catalytic properties depending on the size and elemental formula. Recent advances in dendrimer chemistry even enabled the atom precise synthesis of subnanometer metal clusters that have been impossible to prepare by wet chemical methods. In addition, not only for the synthesis of metal nanoparticles and clusters, the dendrimer itself can also provide the modulation of activity and selectivity in the catalysis. In this review, we summarized the most relevant research in which the dendrimer was employed as the template, modulator, or stabilizer for nanoparticle synthesis for catalytic applications.
Subnanometer noble metal clusters have enormous potential, mainly for catalytic applications. Because a difference of only one atom may cause significant changes in their reactivity, a preparation method with atomic-level precision is essential. Although such a precision with enough scalability has been achieved by gas-phase synthesis, large-scale preparation is still at the frontier, hampering practical applications. We now show the atom-precise and fully scalable synthesis of platinum clusters on a milligram scale from tiara-like platinum complexes with various ring numbers (n = 5–13). Low-temperature calcination of the complexes on a carbon support under hydrogen stream affords monodispersed platinum clusters, whose atomicity is equivalent to that of the precursor complex. One of the clusters (Pt10) exhibits high catalytic activity in the hydrogenation of styrene compared to that of the other clusters. This method opens an avenue for the application of these clusters to preparative-scale catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.