Synchrotron-based angle-resolved photoemission spectroscopy is used to determine the electronic structure of layered SnSe, which was recently turned out to be a potential thermoelectric material. We observe that the top of the valence band consists of two nearly independent hole bands, whose tops differ by ~20 meV in energy, indicating the necessity of a multivalley model to describe the thermoelectric properties. The
Using high-resolution spin-resolved photoemission spectroscopy, we observed a thermal spin depolarization to which all spin-polarized electrons contribute. Furthermore we observed a distinct minority spin state near the Fermi level and a corresponding depolarization that seldom contributes to demagnetization. The origin of this depolarization has been identified as the manybody effect characteristics of half-metallic ferromagnets. Our investigation opens an experimental field of itinerant ferromagnetic physics focusing on phenomena with sub-meV energy scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.