In this paper, we introduce a new projection in a Banach space and show an example of the projections. Then, we study the Mosco convergence of a sequence of nonempty sets concerning the projections in a Banach space.
We study a sequence of generalized projections in a reflexive, smooth, and strictly convex Banach space. Our result shows that Mosco convergence of their ranges implies their pointwise convergence to the generalized projection onto the limit set. Moreover, using this result, we obtain strong and weak convergence of resolvents for a sequence of maximal monotone operators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.