We investigated changes in structures and mechanical properties of the intramuscular connective tissue during the fattening of Japanese Black steers, using the cell maceration method for scanning electron microscopy. During the early fattening period, from 9 to 20 mo of age, collagen fibrils of the endomysium in longissimus muscle associated more closely with each other, and collagen fibers in the perimysium increased in thickness and their wavy pattern became more regular. These changes were closely related to the increase in mechanical strength of the intramuscular connective tissue and resulted in a toughening of the beef during the period. The shear force value of longissimus muscle decreased after 20 mo of age, concomitantly with the rapid increase in the crude fat content. Scanning electron micrographs of the longissimus muscle dissected from 32-mo-old steers clearly showed that the adipose tissues were formed between muscle fiber bundles, that the honeycomb structure of endomysia was partially broken, and that the perimysium separated into thinner collagen fibers. In semitendinosus muscle, in which the crude fat content was lower (P<.05) than that in longissimus muscle, the structure of the intramuscular connective tissue remained rigid at 32 mo of age. The shear force value of the muscle increased even in the late fattening period, from 20 to 32 mo of age. Thus, the development of adipose tissues in longissimus muscle appears to disorganize the structure of the intramuscular connective tissue and contributes to tenderization of highly marbled beef from Japanese Black cattle during the late fattening period.
Numerous stimulatory growth factors that can influence muscle regeneration are known. Recently, it has been demonstrated that neutralization of muscle growth inhibitory factors, such as myostatin (Mstn; also known as growth differentiation factor 8, Gdf8), also leads to increased muscle regeneration in mdx mice that are known to have cycles of degeneration. However, the precise mechanism by which Mstn regulates muscle regeneration has not yet been fully determined. To investigate the role of Mstn in adult skeletal muscle regeneration, wild-type and myostatin-null (Mstn-/-) mice were injured with notexin. Forty-eight hours after injury, accelerated migration and enhanced accretion of myogenic cells (MyoD1+) and macrophages (Mac-1+) was observed at the site of regeneration in Mstn-/- muscle as compared with wild-type muscle. Inflammatory cell numbers decreased more rapidly in the Mstn-/- muscle, indicating that the whole process of inflammatory cell response is accelerated in Mstn-/- mice. Consistent with this result, the addition of recombinant Mstn reduced the activation of satellite cells (SCs) and chemotactic movements of both myoblasts and macrophages ex vivo. Examination of regenerated muscle (28 days after injury) also revealed that Mstn-/- mice showed increased expression of decorin mRNA, reduced fibrosis and improved healing as compared with wild-type mice. On the basis of these results, we propose that Mstn negatively regulates muscle regeneration not only by controlling SC activation but also by regulating the migration of myoblasts and macrophages to the site of injury. Thus, antagonists of Mstn could potentially be useful as pharmacological agents for the treatment of disorders of overt degeneration and regeneration.
The structure, composition and amount of intramuscular connective tissue (IMCT) vary tremendously between muscles, species and breeds, and certainly contribute to meat texture. With animal growth, collagen crosslinks become more stable, and the structural integrity of IMCT increases. These changes increase the mechanical properties of IMCT, contributing to the toughening of meat. Intramuscular fat deposits, mainly in the perimysium between muscle fiber bundles, result in marbling. This causes the remodeling of IMCT structures and reduces the mechanical strength of IMCT, contributing to the tenderization of beef. The IMCT has been thought to be rather immutable compared to myofibrils during postmortem ageing of meat. However, recent studies have shown the disintegration of IMCT during postmortem ageing of meat and its relationship to tenderization of raw meat, although its contribution to cooked meat is still controversial. Given the large influence of IMCT on meat texture, further elucidations of molecular mechanisms which change the structural integrity of IMCT during chronological ageing of animals and postmortem ageing of meat are needed.
Highlights d mito-SRAI provides reliable mitophagy readouts under both live and fixed conditions d mito-SRAI uses a fluorescent protein that is resistant to lysosomal environments d High-throughput screening led to the discovery of mitophagy-inducing compounds d Evidence was given for loss of nigral dopaminergic neurons due to mitophagy failure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.