We developed a novel real-time motion blur compensation system for the blur caused by high-speed one-dimensional motion between a camera and a target. The system consists of a galvanometer mirror and a high-speed color camera, without the need for any additional sensors. We controlled the galvanometer mirror with continuous back-and-forth oscillating motion synchronized to a high-speed camera. The angular speed of the mirror is given in real time within 10 ms based on the concept of background tracking and rapid raw Bayer block matching. Experiments demonstrated that our system captures motion-invariant images of objects moving at speeds up to 30 km/h.
We propose a method to achieve precise sine-wave path tracking for real-time motion-blur compensation to extend the corresponding frequency spectrum in proportional-integral-differential (PID) control by using a pre-emphasis technique. We calculate pre-emphasis coefficients in advance to follow a sine wave with a gain of 0 dB and multiply the input signal by these pre-emphasis coefficients. In experiments, we were thus able to extend the greatest frequency from 100 to 500 Hz and achieve gain improvement of approximately 3 dB at 400 and 500 Hz. For the application of inspection, we confirmed that motion blur is significantly reduced when the system operates at high frequency, and we achieved a responsiveness 3.3 times higher than that of our previous system.
Galvanometer mirrors are used for optical applications such as target tracking, drawing, and scanning control because of their high speed and accuracy. However, the responsiveness of a galvanometer mirror is limited by its inertia; hence, the gain of a galvanometer mirror is reduced when the control path is steep. In this research, we propose a method to extend the corresponding frequency using a pre-emphasis technique to compensate for the gain reduction of galvanometer mirrors in sine-wave path tracking using proportional-integral-differential (PID) control. The pre-emphasis technique obtains an input value for a desired output value in advance. Applying this method to control the galvanometer mirror, the raw gain of a galvanometer mirror in each frequency and amplitude for sine-wave path tracking using a PID controller was calculated. Where PID control is not effective, maintaining a gain of 0 dB to improve the trajectory tracking accuracy, it is possible to expand the speed range in which a gain of 0 dB can be obtained without tuning the PID control parameters. However, if there is only one frequency, amplification is possible with a single pre-emphasis coefficient. Therefore, a sine wave is suitable for this technique, unlike triangular and sawtooth waves. Hence, we can adopt a pre-emphasis technique to configure the parameters in advance, and we need not prepare additional active control models and hardware. The parameters are updated immediately within the next cycle because of the open loop after the pre-emphasis coefficients are set. In other words, to regard the controller as a black box, we need to know only the input-to-output ratio, and detailed modeling is not required. This simplicity allows our system to be easily embedded in applications. Our method using the pre-emphasis technique for a motion-blur compensation system and the experiment conducted to evaluate the method are explained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.